Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 375
Filter
1.
Nature ; 629(8012): 579-585, 2024 May.
Article in English | MEDLINE | ID: mdl-38750235

ABSTRACT

Towards realizing the future quantum internet1,2, a pivotal milestone entails the transition from two-node proof-of-principle experiments conducted in laboratories to comprehensive multi-node set-ups on large scales. Here we report the creation of memory-memory entanglement in a multi-node quantum network over a metropolitan area. We use three independent memory nodes, each of which is equipped with an atomic ensemble quantum memory3 that has telecom conversion, together with a photonic server where detection of a single photon heralds the success of entanglement generation. The memory nodes are maximally separated apart for 12.5 kilometres. We actively stabilize the phase variance owing to fibre links and control lasers. We demonstrate concurrent entanglement generation between any two memory nodes. The memory lifetime is longer than the round-trip communication time. Our work provides a metropolitan-scale testbed for the evaluation and exploration of multi-node quantum network protocols and starts a stage of quantum internet research.

2.
Mol Cell ; 76(5): 838-851.e5, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31564558

ABSTRACT

Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes, including signal transduction and gene expression patterns, arising from specific oncogenotypes and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased assessment of the associations between metabolic pathway preferences and other cell-autonomous processes. Here, we quantified metabolic features, mostly from the 13C enrichment of molecules from central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured under identical conditions. Because these cell lines were extensively annotated for oncogenotype, gene expression, protein expression, and therapeutic sensitivity, the resulting database enables the user to uncover new relationships between metabolism and these orthogonal processes.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor/metabolism , Metabolome/physiology , Biomarkers, Tumor/metabolism , Gas Chromatography-Mass Spectrometry/methods , Gene Expression Regulation, Neoplastic/physiology , Glucose/metabolism , Glutamine/metabolism , Humans , Metabolic Networks and Pathways/genetics , Metabolomics/methods , Neoplasms/metabolism
3.
Proc Natl Acad Sci U S A ; 121(30): e2400168121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39008662

ABSTRACT

The perfluorocarbons tetrafluoromethane (CF4, PFC-14) and hexafluoroethane (C2F6, PFC-116) are potent greenhouse gases with near-permanent atmospheric lifetimes relative to human timescales and global warming potentials thousands of times that of CO2. Using long-term atmospheric observations from a Chinese network and an inverse modeling approach (top-down method), we determined that CF4 emissions in China increased from 4.7 (4.2-5.0, 68% uncertainty interval) Gg y-1 in 2012 to 8.3 (7.7-8.9) Gg y-1 in 2021, and C2F6 emissions in China increased from 0.74 (0.66-0.80) Gg y-1 in 2011 to 1.32 (1.24-1.40) Gg y-1 in 2021, both increasing by approximately 78%. Combined emissions of CF4 and C2F6 in China reached 78 Mt CO2-eq in 2021. The absolute increase in emissions of each substance in China between 2011-2012 and 2017-2020 was similar to (for CF4), or greater than (for C2F6), the respective absolute increase in global emissions over the same period. Substantial CF4 and C2F6 emissions were identified in the less-populated western regions of China, probably due to emissions from the expanding aluminum industry in these resource-intensive regions. It is likely that the aluminum industry dominates CF4 emissions in China, while the aluminum and semiconductor industries both contribute to C2F6 emissions. Based on atmospheric observations, this study validates the emission magnitudes reported in national bottom-up inventories and provides insights into detailed spatial distributions and emission sources beyond what is reported in national bottom-up inventories.

4.
Anal Chem ; 96(23): 9585-9592, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38816678

ABSTRACT

The PD-L1 protein on extracellular vesicles (EVs) is a promising biomarker for tumor immunotherapy. However, PD-L1+ EVs have various cell origins, so further analysis of the subpopulations is essential to help understand better their relationship with tumor immunotherapy. Different from the previous work which focus on the level of total PD-L1+ EVs expression, we, herein, report a dual-recognition mediated autocatalytic amplification (DRMAA) assay to detect the PD-L1 derived from tumors (EpCAM+), immune T cells (CD3+), and total (Lipids) EVs, respectively. The DRMAA assay employed proximity hybridization to construct a complete trigger sequence and then catalyzed the cross-hybridization of three hairpin probes, producing a three-way DNA junction (3-WJ) structure carrying the newly exposed trigger sequence. The 3-WJ complex subsequently initiated an autocatalytic amplification reaction and higher sensitivity than the traditional catalytic hairpin assembly assay was obtained. It was found that the EpCAM+ and PD-L1+ EVs were more effective than others in distinguishing lung cancer patients from healthy people. Surprisingly, the CD3+ and PD-L1+ EVs in lung cancer patients were also upregulated, indicating that immune cell-derived PD-L1+ EVs are also non-negligible marker in a tumor microenvironment. Our results suggested that the DRMAA assay would improve the study of subpopulations of PD-L1+ EVs to provide new insights for cancer immunotherapies.


Subject(s)
B7-H1 Antigen , Extracellular Vesicles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Catalysis , Epithelial Cell Adhesion Molecule/metabolism , Nucleic Acid Amplification Techniques , Biomarkers, Tumor , Nucleic Acid Hybridization
5.
Biochem Biophys Res Commun ; 722: 150160, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38795453

ABSTRACT

Carbene transfer reactions have emerged as pivotal methodologies for the synthesis of complex molecular architectures. Heme protein-catalyzed carbene transfer reactions have shown promising results on model compounds. However, their limited substrate scope has hindered their application in natural product functionalization. Building upon the foundation of previously published work on a carbene transferase-myoglobin variant, this study employs computer-aided protein engineering to design myoglobin variants, using either docking or the deep learning-based LigandMPNN method. These variants were utilized as catalysts in carbene transfer reactions with a selection of monoterpene substrates featuring C-C double bonds, leading to seven target products. This cost-effective methodology broadens the substrate scope for heme protein-catalyzed reactions, thereby opening novel pathways for research in heme protein functionalities and offering fresh perspectives in the synthesis of bioactive molecules.


Subject(s)
Methane , Monoterpenes , Myoglobin , Myoglobin/chemistry , Methane/chemistry , Methane/analogs & derivatives , Monoterpenes/chemistry , Monoterpenes/metabolism , Protein Engineering/methods , Transferases/chemistry , Transferases/metabolism , Molecular Docking Simulation
6.
Small ; 20(11): e2304843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37936334

ABSTRACT

Light-induced heat has a non-negligible role in photocatalytic reactions. However, it is still challenging to design highly efficient catalysts that can make use of light and thermal energy synergistically. Herein, the study proposes a plasma super-photothermal S-scheme heterojunction core-shell nanoreactor based on manipulation of the driving factors, which consists of α-Fe2 O3 encapsulated by g-C3 N4 modified with gold quantum dots. α-Fe2 O3 can promote carrier spatial separation while also acting as a thermal core to radiate heat to the shell, while Au quantum dots transfer energetic electrons and heat to g-C3 N4 via surface plasmon resonance. Consequently, the catalytic activity of Au/α-Fe2 O3 @g-C3 N4 is significantly improved by internal and external double hot spots, and it shows an H2 evolution rate of 5762.35 µmol h-1 g-1 , and the selectivity of CO2 conversion to CH4 is 91.2%. This work provides an effective strategy to design new plasma photothermal catalysts for the solar-to-fuel transition.

7.
Small ; 20(28): e2308032, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801010

ABSTRACT

Low solar energy utilization efficiency and serious charge recombination remain major challenges for photocatalytic systems. Herein, a hollow core-shell Au/g-C3N4@Ag3PO4 photothermal nanoreactor is successfully prepared by a two-step deposition method. Benefit from efficient spectral utilization and fast charge separation induced by the unique hollow core-shell heterostructure, the H2 evolution rate of Au/g-C3N4@Ag3PO4 is 16.9 times that of the pristine g-C3N4, and the degradation efficiency of tetracycline is increased by 88.1%. The enhanced catalytic performance can be attributed to the ordered charge movement on the hollow core-shell structure and a local high-temperature environment, which effectively accelerates the carrier separation and chemical reaction kinetics. This work highlights the important role of the space confinement effect in photothermal catalysis and provides a promising strategy for the development of the next generation of highly efficient photothermal catalysts.

8.
Mol Psychiatry ; 28(7): 3092-3103, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37117459

ABSTRACT

Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.


Subject(s)
Autism Spectrum Disorder , Humans , Proton Magnetic Resonance Spectroscopy/methods , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Glutamic Acid , Aspartic Acid , Choline , gamma-Aminobutyric Acid
9.
J Org Chem ; 89(5): 3359-3364, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38373245

ABSTRACT

An efficient method for the synthesis of five-membered chiral propargylic amines from 2-aryl-3H-indol-3-one and alkynylsilanes has been developed. The reaction proceeded under the catalytic system of PtCl4, oxazoline-based ligand L11, Zn(CF3COO)2, and AcOH in DCE at 95 °C via in situ desilylation of TMS-alkynes. This methodology also highlights a new protocol for the in situ desilylation of alkynylsilanes. The reaction showed a broad substrate scope with good yields and enantioselectivity.

10.
J Org Chem ; 89(3): 1873-1879, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38241606

ABSTRACT

An efficient method for the first ene-reaction of 2-aryl-3H-indol-3-ones with allyltrimethylsilane has been developed for the first time. The reaction proceeded under the catalysis of Pd(OAc)2 and chiral phosphoric ligand L11 in the presence of Cu(CF3COO)2·XH2O, PivOH, and 5 Å molecular sieves in DMSO at 60 °C. The present methodology can avoid the impact of amine products generated by the reaction on the catalyst, and at the same time, the high catalytic activity of classical palladium catalysts still has catalytic ability for low electrophilic keto-imines. The desired products were furnished in excellent yields with good enantioselectivity.

11.
Environ Sci Technol ; 58(13): 5750-5759, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38506744

ABSTRACT

1,1-Difluoroethane (HFC-152a) is a hydrofluorocarbon regulated by the Montreal Protocol, and its emissions in China are of concern as China will regulate HFC-152a in 2024. However, no observation-inferred top-down estimates were undertaken after 2017, and substantial gaps existed among previous estimates of China's HFC-152a emissions. Using the atmospheric observations and inverse modeling, this study reveals China's HFC-152a emissions of 9.4 ± 1.7 Gg/yr (gigagrams per year), 10.6 ± 1.8 Gg/yr, and 9.7 ± 1.5 Gg/yr in 2018, 2019, and 2020, respectively. In addition, we display an overall increasing trend during 2011-2020, which is in contrast to the decreasing and steady trend reported by the Emission Database for Global Atmospheric Research (EDGAR) and the Chinese government, respectively. Subsequently, we establish a comprehensive bottom-up emission inventory matching with top-down estimates and thus succeed in explaining the gaps among previous estimates. Furthermore, the contribution of China's emissions to global HFC-152a emission growth increased from 15% during 2001-2010 to >100% during 2011-2020. An emission projection based on our improved inventory shows that the Kigali Amendment (KA) would assist in avoiding 1535.6-4710.6 Gg (251.8-772.5 Tg CO2-eq) HFC-152a emissions during 2024-2100. Our findings indicate relatively accurate China's HFC-152a emissions and provide scientific support for addressing climate change and implementing the KA.


Subject(s)
Greenhouse Gases , Rwanda , China , Climate Change
12.
Environ Sci Technol ; 58(26): 11606-11614, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874561

ABSTRACT

Global atmospheric emissions of perfluorocyclobutane (c-C4F8, PFC-318), a potent greenhouse gas, have increased rapidly in recent years. Combining atmospheric observations made at nine Chinese sites with a Lagrangian dispersion model-based Bayesian inversion technique, we show that PFC-318 emissions in China grew by approximately 70% from 2011 to 2020, rising from 0.65 (0.54-0.72) Gg year-1 in 2011 to 1.12 (1.05-1.19) Gg year-1 in 2020. The PFC-318 emission increase from China played a substantial role in the overall increase in global emissions during the study period, contributing 58% to the global total emission increase. This growth predominantly originated in eastern China. The regions with high emissions of PFC-318 in China overlap with areas densely populated with polytetrafluoroethylene (PTFE) factories, implying that fluoropolymer factories are important sources of PFC-318 emissions in China. Our investigation reveals an emission factor of approximately 3.02 g of byproduct PFC-318 emissions per kg of hydrochlorofluorocarbon-22 (HCFC-22) feedstock use in the production of tetrafluoroethylene (TFE) (for PTFE production) and hexafluoropropylene (HFP) if we assume all HCFC-22 produced for feedstock uses in China are pyrolyzed to produce PTFE and HFP. Further facility-level sampling and analysis are needed for a more precise evaluation of emissions from these factories.


Subject(s)
Air Pollutants , Atmosphere , China , Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring , Fluorocarbons/analysis , Bayes Theorem , Polytetrafluoroethylene , Cyclobutanes
13.
Stereotact Funct Neurosurg ; 102(1): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-37995674

ABSTRACT

INTRODUCTION: This study aimed to assess the impact of gamma knife radiosurgery on brainstem cavernous malformations (CMs). METHODS: A total of 85 patients (35 females; median age 41.0 years) who underwent gamma knife radiosurgery for brainstem CMs at our institute between 2006 and 2015 were enrolled in a prospective clinical observation trial. Risk factors for hemorrhagic outcomes were evaluated, and outcomes were compared across different margin doses. RESULTS: The pre-radiosurgery annual hemorrhage rate (AHR) was 32.3% (44 hemorrhages during 136.2 patient-years). The median planning target volume was 1.292 cc. The median margin and maximum doses were 15.0 and 29.2 Gy, respectively, with a median isodose line of 50.0%. The post-radiosurgery AHR was 2.7% (21 hemorrhages during 769.9 patient-years), with a rate of 5.5% within the first 2 years and 2.0% thereafter. The post-radiosurgery AHR for patients with margin doses of ≤13.0 Gy (n = 15), 14.0-15.0 Gy (n = 50), and ≥16.0 Gy (n = 20) was 5.4, 2.7, and 0.6%, respectively. Correspondingly, transient adverse radiation effects were observed in 6.7 (1/15), 10.0 (5/50), and 30.0% (6/20) of cases, respectively. An increased margin dose per 1 Gy (hazard ratio: 0.530, 95% CI: 0.341-0.826, p = 0.005) was identified as an independent protective factor against post-radiosurgery hemorrhage. Margin doses of ≥16.0 Gy were associated with improved hemorrhagic outcomes (hazard ratio: 0.343, 95% confidence interval [CI]: 0.157-0.749, p = 0.007), but an increased risk of adverse radiation effects (odds ratio: 3.006, 95% CI: 1.041-8.677, p = 0.042). CONCLUSION: The AHR of brainstem CMs decreased following radiosurgery, and our study revealed a significant dose-response relationship. Margin doses of 14-15 Gy were recommended. Further studies are required to validate our findings.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Intracranial Arteriovenous Malformations , Radiosurgery , Adult , Female , Humans , Brain Stem/surgery , Follow-Up Studies , Hemangioma, Cavernous, Central Nervous System/radiotherapy , Hemangioma, Cavernous, Central Nervous System/surgery , Hemangioma, Cavernous, Central Nervous System/complications , Hemorrhage/complications , Hemorrhage/surgery , Prospective Studies , Radiosurgery/adverse effects , Treatment Outcome , Male
14.
BMC Anesthesiol ; 24(1): 230, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987696

ABSTRACT

PURPOSE: Extracorporeal cardiopulmonary resuscitation (ECPR) might markedly increase the survival of selected patients with refractory cardiac arrest. But the application situation and indications remained unclear. MATERIALS AND METHODS: We respectively reviwed all adult patients who underwent ECPR from January 2017 to March 2021. Patient characteristics, initiation and management of ECMO, complications, and outcomes were collected and compared between the survivors and nonsurvivors. LASSO regression was used to screen risk factors. Multivariate logistic regression was performed with several parameters screened by LASSO regression. RESULTS: Data were reported from 42 ECMO centers covering 19 provinces of China. A total of 648 patients were included in the study, including 491 (75.8%) males. There were 11 ECPR centers in 2017, and the number increased to 42 in 2020. The number of patients received ECPR increased from 33 in 2017 to 274 in 2020, and the survival rate increased from 24.2% to 33.6%. Neurological complications, renal replacement therapy, epinephrine dosage after ECMO, recovery of spontaneous circulation before ECMO, lactate clearance and shockable rhythm were risk factors independently associated with outcomes of whole process. Sex, recovery of spontaneous circulation before ECMO, lactate, shockable rhythm and causes of arrest were pre-ECMO risk factors independently affecting outcomes. CONCLUSIONS: From January 2017 to March 2021, the numbers of ECPR centers and cases in mainland China increased gradually over time, as well as the survival rate. Pre-ECMO risk factors, especially recovery of spontaneous circulation before ECMO, shockable rhythm and lactate, are as important as post-ECMO management,. Neurological complications are vital risk factors after ECMO that deserved close attention. TRIAL REGISTRATION: NCT04158479, registered on 2019/11/08. https://clinicaltrials.gov/NCT04158479.


Subject(s)
Cardiopulmonary Resuscitation , Extracorporeal Membrane Oxygenation , Humans , Male , Extracorporeal Membrane Oxygenation/methods , Extracorporeal Membrane Oxygenation/statistics & numerical data , China/epidemiology , Female , Retrospective Studies , Cardiopulmonary Resuscitation/methods , Middle Aged , Adult , Risk Factors , Heart Arrest/therapy , Heart Arrest/epidemiology , Heart Arrest/mortality , Survival Rate , Aged
15.
Cogn Emot ; : 1-10, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961837

ABSTRACT

We replicated and extended the findings of Yao et al. [(2018). Differential emotional processing in concrete and abstract words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1064-1074] regarding the interaction of emotionality, concreteness, and imageability in word processing by measuring eye fixation times on target words during normal reading. A 3 (Emotion: negative, neutral, positive) × 2 (Concreteness: abstract, concrete) design was used with 22 items per condition, with each set of six target words matched across conditions in terms of word length and frequency. Abstract (e.g. shocking, reserved, fabulous) and concrete (e.g. massacre, calendar, treasure) target words appeared (separately) within contextually neutral, plausible sentences. Sixty-three participants each read all 132 experimental sentences while their eye movements were recorded. Analyses using Gamma generalised linear mixed models revealed significant effects of both Emotion and Concreteness on all fixation measures, indicating faster processing for emotional and concrete words. Additionally, there was a significant Emotion × Concreteness interaction which, critically, was modulated by Imageability in early fixation time measures. Emotion effects were significantly larger in higher-imageability abstract words than in lower-imageability ones, but remained unaffected by imageability in concrete words. These findings support the multimodal induction hypothesis and highlight the intricate interplay of these factors in the immediate stages of word processing during fluent reading.

16.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38610534

ABSTRACT

This study explores the important role of assessing force levels in accurately controlling upper limb movements in human-computer interfaces. It uses a new method that combines entropy to improve the recognition of force levels. This research aims to differentiate between different levels of isometric contraction forces using electroencephalogram (EEG) signal analysis. It integrates eight different entropy measures: power spectrum entropy (PSE), singular spectrum entropy (SSE), logarithmic energy entropy (LEE), approximation entropy (AE), sample entropy (SE), fuzzy entropy (FE), alignment entropy (PE), and envelope entropy (EE). The findings emphasize two important advances: first, including a wide range of entropy features significantly improves classification efficiency; second, the fusion entropy method shows exceptional accuracy in classifying isometric contraction forces. It achieves an accuracy rate of 91.73% in distinguishing between 15% and 60% maximum voluntary contraction (MVC) forces, along with 69.59% accuracy in identifying variations across 15%, 30%, 45%, and 60% MVC. These results illuminate the efficacy of employing fusion entropy in EEG signal analysis for isometric contraction detection, heralding new opportunities for advancing motor control and facilitating fine motor movements through sophisticated human-computer interface technologies.


Subject(s)
Electroencephalography , Isometric Contraction , Humans , Entropy , Movement , Recognition, Psychology
17.
Neuroimage ; 282: 120399, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37827205

ABSTRACT

The neural mechanisms of inner speech remain unclear despite its importance in a variety of cognitive processes and its implication in aberrant perceptions such as auditory verbal hallucinations. Previous research has proposed a corollary discharge model in which inner speech is a truncated form of overt speech, relying on speech production-related regions (e.g. left inferior frontal gyrus). This model does not fully capture the diverse phenomenology of inner speech and recent research suggesting alternative perception-related mechanisms of generation. Therefore, we present and test a framework in which inner speech can be generated by two separate mechanisms, depending on its phenomenological qualities: a corollary discharge mechanism relying on speech production regions and a perceptual simulation mechanism within speech perceptual regions. The results of the activation likelihood estimation meta-analysis examining inner speech studies support the idea that varieties of inner speech recruit different neural mechanisms.


Subject(s)
Schizophrenia , Speech Perception , Humans , Speech/physiology , Egocentrism , Hallucinations , Speech Perception/physiology
18.
J Am Chem Soc ; 145(35): 19195-19201, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37616490

ABSTRACT

We present the first enantioselective nickel-catalyzed borylative coupling of 1,3-dienes with aldehydes, providing an efficient route to highly valuable homoallylic alcohols in a single step. The reaction involves the 1,4-carboboration of dienes, leading to the formation of C-C and C-B bonds accompanied by the construction of two continuous stereogenic centers. Enabled by a chiral spiro phosphine-oxazoline nickel complex, this transformation yields products with exceptional diastereoselectivity, E-selectivity, and enantioselectivity. The diastereoselectivity of the reaction can be controlled by employing either (Z)-1,3-dienes or (E)-1,3-dienes.

19.
Anal Chem ; 95(28): 10625-10633, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37424077

ABSTRACT

A growing number of studies have shown that tumor cells secrete extracellular vesicles (EVs) containing programmed death-ligand 1 (PD-L1) protein. These vesicles can travel to lymph nodes and remotely inactivate T cells, thereby evading immune system attack. Therefore, the simultaneous detection of PD-L1 protein expression in cells and EVs is of great significance in guiding immunotherapy. Herein, we developed a method based on qPCR for the simultaneous detection of PD-L1 protein and mRNA in EVs and their parental cells (PREC-qPCR assay). Lipid probes immobilized on magnetic beads were used to capture EVs directly from samples. For RNA assay, EVs were directly broken by heating and quantified with qPCR. As to protein assay, EVs were recognized and bound with specific probes (such as aptamers), which were used as templates in subsequent qPCR analysis. This method was used to analyze EVs of patient-derived tumor clusters (PTCs) and plasma samples from patients and healthy volunteers. The results revealed that the expression of exosomal PD-L1 in PTCs was correlated with tumor types and significantly higher in plasma-derived EVs from tumor patients than that of healthy individuals. When extended to cells and PD-L1 mRNAs, the results showed that the expression of PD-L1 protein was consistent with mRNA in cancer cell lines, while PTCs demonstrated significant heterogeneity. This comprehensive detection of PD-L1 at four levels (cell, EVs, protein, and mRNA) is believed to enhance our understanding of the relationship among PD-L1, tumors, and the immune system and to provide a promising tool for predicting the benefits of immunotherapy.


Subject(s)
Real-Time Polymerase Chain Reaction , Humans , Neoplasms/genetics , Real-Time Polymerase Chain Reaction/methods , RNA, Messenger/analysis , RNA, Messenger/genetics , Extracellular Vesicles/genetics , Cell Line, Tumor
20.
J Gene Med ; 25(6): e3488, 2023 06.
Article in English | MEDLINE | ID: mdl-36813742

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IDD) is a primary health problem worldwide that involves oxidative stress, ferroptosis, and lipid metabolism. However, the underlying mechanism remains unclear. We investigated whether the transcription factor BTB and CNC homology 1 (BACH1) affected IDD progression by regulating HMOX1/GPX4-mediated ferroptosis and lipid metabolism in nucleus pulposus cells (NPCs). METHODS: A rat IDD model was created to detect BACH1 expression in intervertebral disc tissues. Next, rat NPCs were isolated and treated with tert-butyl hydroperoxide (TBHP). BACH1, HMOX1, and GPX4 were knocked down, and oxidative stress and ferroptosis-related marker levels were examined. The binding of BACH1 to HMOX1 and of BACH1 to GPX4 was verified using chromatin immunoprecipitation (ChIP). Finally, untargeted lipid metabolism analysis was performed. RESULTS: An IDD model was successfully created, and BACH1 activity was found to be enhanced in the rat IDD tissues. BACH1 inhibited TBHP-induced oxidative stress and oxidative stress-induced ferroptosis in NPCs. Simultaneously, ChIP verified that BACH1 protein bound to HMOX1 and targeted the HMOX1 transcription inhibition to affect oxidative stress in NPCs. ChIP also verified that BACH1 bound to GPX4 and targeted the GPX4 inhibition to affect ferroptosis in NPCs. Finally, BACH1 inhibition in vivo improved IDD and affected lipid metabolism. CONCLUSIONS: The transcription factor BACH1 promoted IDD by regulating HMOX1/GPX4 to mediate oxidative stress, ferroptosis, and lipid metabolism in NPCs.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats , Animals , Intervertebral Disc Degeneration/genetics , Ferroptosis/genetics , Lipid Metabolism/genetics , Oxidative Stress , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL