Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Trauma ; 70(6): 1453-63, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21817983

ABSTRACT

BACKGROUND: Prolonged compression of limb muscles and subsequent decompression are important in the development of crush syndrome (CS). We applied a simple rubber tourniquet to rat hind limbs to create a CS model. METHODS: Anesthetized rats were subjected to bilateral hind limb compression for 5 hours followed by decompression and reperfusion for 0 hour, 1 hour, 3 hours, and 24 hours under monitoring of arterial blood pressure and electrocardiography. Blood and tissue samples were collected for histology, biochemical analysis, and tissue myeloperoxidase activity assessment. RESULTS: The survival rates of the CS-model groups remained at 100% until 3 hours, however, dropped to 25% at 24 hours after reperfusion mainly because of hyperkalemia and consequent hypotension observed at 1 hour and deteriorated at 3 hours after reperfusion. Rhabdomyolysis evaluated by circulating and histologic markers of injury was found as early as 1 hour and more marked at 3 hours, resulting in impaired renal function 24 hours after reperfusion. Myeloperoxidase activities increased with incremental periods after reperfusion not only in injured limb muscles but also in kidney and lung, suggesting an abnormal interaction between the vascular endothelium and circulating leukocytes after rhabdomyolysis, possibly causing subsequent multiple organ dysfunction frequently encountered in CS. CONCLUSION: The findings from this study demonstrate the feasibility of a novel small animal model of extremity crush injury. By using this model, the impact of incremental periods of reperfusion on mortality and remote organ dysfunctions can be characterized. Future studies are necessary to better define a threshold for this injury pattern and the impact of other factors underlying this syndrome.


Subject(s)
Crush Syndrome/physiopathology , Animals , Crush Syndrome/pathology , Disease Models, Animal , Electrocardiography , Feasibility Studies , Hindlimb/blood supply , Kidney Function Tests , Male , Peroxidase/metabolism , Rats , Rats, Wistar , Reperfusion , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Rhabdomyolysis/pathology , Rhabdomyolysis/physiopathology , Survival Rate , Tourniquets
2.
J Pharmacol Exp Ther ; 325(1): 69-76, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18218831

ABSTRACT

In recent studies, the cytotoxic activity of NO has been investigated for its potential use in anticancer therapies. Nitrosated human serum albumin (NO-HSA) may act as a reservoir of NO in vivo. However, there are no published reports regarding the effects of NO-HSA on cancer. Therefore, the present study investigated the antitumor activity of NO-HSA. NO-HSA was prepared by incubating HSA, which had been sulfhydrylated using iminothiolane, with isopentyl nitrite (6.64 mol NO/mol HSA). Antitumor activity was examined in vitro using murine colon 26 carcinoma (C26) cells and in vivo using C26 tumor-bearing mice. Exposure to NO-HSA increased the production of reactive oxygen species in C26 cells. Flow cytometric analysis using rhodamine 123 showed that NO-HSA caused mitochondrial depolarization. Activation of caspase-3 and DNA fragmentation were observed in C26 cells after incubation with 100 muM NO-HSA for 24 h, and NO-HSA inhibited the growth of C26 cells in a concentration-dependent manner. The growth of C26 tumors in mice was significantly inhibited by administration of NO-HSA compared with saline and HSA treatment. Immunohistochemical analysis of tumor tissues demonstrated an increase in terminal deoxynucleotidyl transferase dUTP nickend labeling-positive cells in NO-HSA-treated mice, suggesting that inhibition of tumor growth by NO-HSA was mediated through induction of apoptosis. Biochemical parameters (such as serum creatinine, blood urea nitrogen, aspartate aminotransferase, and alanine aminotransferase) showed no significant differences among the three treatment groups, indicating that NO-HSA did not cause hepatic or renal damage. These results suggest that NO-HSA has the potential for chemopreventive and/or chemotherapeutic activity with few side effects.


Subject(s)
Neoplasms, Experimental/drug therapy , Nitroso Compounds/therapeutic use , Serum Albumin/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Humans , Immunohistochemistry , Mice , Neoplasms, Experimental/pathology , Nitroso Compounds/chemical synthesis , Nitroso Compounds/pharmacology , Serum Albumin/chemical synthesis , Serum Albumin/pharmacology , Serum Albumin, Human , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL