Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Liver Int ; 41(5): 996-1011, 2021 05.
Article in English | MEDLINE | ID: mdl-33354866

ABSTRACT

BACKGROUND/AIMS: Glycogen synthesis and storage are normal hepatocyte functions. However, glycogenosis, defined as excess hepatocyte glycogen visible by routine H&E light microscopy, has not been well characterized in nonalcoholic fatty liver disease (NAFLD). METHODS: Glycogenosis in NAFLD liver biopsies was graded as "none", "focal" (in <50% of hepatocytes), or "diffuse" (in ≥50% of hepatocytes). Clinical and pathological variables associated with glycogenosis were assessed. 2047 liver biopsies were prospectively analysed. RESULTS: In adults and children, any glycogenosis was present in 54% of cases; diffuse glycogenosis was noted in approximately 1/3 of cases. On multiple logistic regression analysis, adults with glycogenosis tended to be older (P = .003), female (P = .04), have higher serum glucose (P = .01), and use insulin (P = .02). Adults tended to have lower steatosis scores (P = .006) and lower fibrosis stages (P = .005); however, unexpectedly, they also tended to have more hepatocyte injury including ballooning (P = .003). On multiple logistic regression analysis, paediatric patients with glycogenosis were more likely to be Hispanic (P = .03), have lower body weight (P = .002), elevated triglycerides (P = .001), and a higher fasting glucose (P = .007). Paediatric patients with glycogenosis also had less steatosis (P < .001) than those without. CONCLUSIONS: Glycogenosis is common in adult and paediatric NAFLD, and is associated with clinical features of insulin resistance. Glycogenosis is important to recognize histologically because it may be misinterpreted as ballooning, and when diffuse, confusion with glycogen storage disorders or glycogenic hepatopathy must be avoided. The newly observed dichotomous relationship between glycogenosis and increased liver cell injury but decreased steatosis and fibrosis requires further study.


Subject(s)
Glycogen Storage Disease , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Adult , Child , Female , Fibrosis , Glycogen Storage Disease/pathology , Humans , Liver/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/pathology
2.
PLoS Pathog ; 5(2): e1000291, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19242562

ABSTRACT

Hepatitis C virus (HCV) is a blood-borne pathogen and a major cause of liver disease worldwide. Gene expression profiling was used to characterize the transcriptional response to HCV H77c infection. Evidence is presented for activation of innate antiviral signaling pathways as well as induction of lipid metabolism genes, which may contribute to oxidative stress. We also found that infection of chimeric SCID/Alb-uPA mice by HCV led to signs of hepatocyte damage and apoptosis, which in patients plays a role in activation of stellate cells, recruitment of macrophages, and the subsequent development of fibrosis. Infection of chimeric mice with HCV H77c also led an inflammatory response characterized by infiltration of monocytes and macrophages. There was increased apoptosis in HCV-infected human hepatocytes in H77c-infected mice but not in mice inoculated with a replication incompetent H77c mutant. Moreover, TUNEL reactivity was restricted to HCV-infected hepatocytes, but an increase in FAS expression was not. To gain insight into the factors contributing specific apoptosis of HCV infected cells, immunohistological and confocal microscopy using antibodies for key apoptotic mediators was done. We found that the ER chaperone BiP/GRP78 was increased in HCV-infected cells as was activated BAX, but the activator of ER stress-mediated apoptosis CHOP was not. We found that overall levels of NF-kappaB and BCL-xL were increased by infection; however, within an infected liver, comparison of infected cells to uninfected cells indicated both NF-kappaB and BCL-xL were decreased in HCV-infected cells. We conclude that HCV contributes to hepatocyte damage and apoptosis by inducing stress and pro-apoptotic BAX while preventing the induction of anti-apoptotic NF-kappaB and BCL-xL, thus sensitizing hepatocytes to apoptosis.


Subject(s)
Apoptosis , Endoplasmic Reticulum/physiology , Gene Expression Regulation , Hepatitis C/physiopathology , Oxidative Stress , Stress, Physiological , Animals , Endoplasmic Reticulum Chaperone BiP , Gene Expression Profiling , Heat-Shock Proteins/metabolism , Hepacivirus/physiology , Hepatitis C/immunology , Hepatitis C/pathology , Hepatitis C/virology , Hepatitis C Antibodies/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Lipid Metabolism , Liver/metabolism , Liver/virology , Mice , Mice, SCID , Microscopy, Confocal , Molecular Chaperones/metabolism , NF-kappa B/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
3.
Hepatol Commun ; 4(6): 809-824, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32490318

ABSTRACT

Until recently, 10% of hepatocellular adenomas (HCAs) remained unclassified (UHCA). Among the UHCAs, the sonic hedgehog HCA (shHCA) was defined by focal deletions that fuse the promoter of Inhibin beta E chain with GLI1. Prostaglandin D2 synthase was proposed as immunomarker. In parallel, our previous work using proteomic analysis showed that most UHCAs constitute a homogeneous subtype associated with overexpression of argininosuccinate synthase (ASS1). To clarify the use of ASS1 in the HCA classification and avoid misinterpretations of the immunohistochemical staining, the aims of this work were to study (1) the link between shHCA and ASS1 overexpression and (2) the clinical relevance of ASS1 overexpression for diagnosis. Molecular, proteomic, and immunohistochemical analyses were performed in UHCA cases of the Bordeaux series. The clinico-pathological features, including ASS1 immunohistochemical labeling, were analyzed on a large international series of 67 cases. ASS1 overexpression and the shHCA subgroup were superimposed in 15 cases studied by molecular analysis, establishing ASS1 overexpression as a hallmark of shHCA. Moreover, the ASS1 immunomarker was better than prostaglandin D2 synthase and only found positive in 7 of 22 shHCAs. Of the 67 UHCA cases, 58 (85.3%) overexpressed ASS1, four cases were ASS1 negative, and in five cases ASS1 was noncontributory. Proteomic analysis performed in the case of doubtful interpretation of ASS1 overexpression, especially on biopsies, can be a support to interpret such cases. ASS1 overexpression is a specific hallmark of shHCA known to be at high risk of bleeding. Therefore, ASS1 is an additional tool for HCA classification and clinical diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL