Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Biol Chem ; 299(11): 105342, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832872

ABSTRACT

The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.


Subject(s)
Actin Cytoskeleton , Actins , Formins , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Formins/metabolism , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
2.
Am J Physiol Cell Physiol ; 324(5): C1017-C1027, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36878847

ABSTRACT

Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.


Subject(s)
Diabetes Mellitus, Type 2 , Sirtuins , Rats , Mice , Humans , Animals , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuins/genetics , Sirtuins/metabolism , NAD/metabolism , Diabetes Mellitus, Type 2/metabolism , Myocytes, Cardiac/metabolism , Adenosine Triphosphate/metabolism , KATP Channels/genetics , KATP Channels/metabolism
3.
Circ Res ; 118(12): e36-42, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27166251

ABSTRACT

RATIONALE: Proton pump inhibitors (PPIs) are popular drugs for gastroesophageal reflux, which are now available for long-term use without medical supervision. Recent reports suggest that PPI use is associated with cardiovascular, renal, and neurological morbidity. OBJECTIVE: To study the long-term effect of PPIs on endothelial dysfunction and senescence and investigate the mechanism involved in PPI-induced vascular dysfunction. METHODS AND RESULTS: Chronic exposure to PPIs impaired endothelial function and accelerated human endothelial senescence by reducing telomere length. CONCLUSIONS: Our data may provide a unifying mechanism for the association of PPI use with increased risk of cardiovascular, renal, and neurological morbidity and mortality.


Subject(s)
Cellular Senescence/drug effects , Endothelial Cells/drug effects , Proton Pump Inhibitors/pharmacology , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/physiology , Humans
5.
Nat Commun ; 14(1): 6900, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903764

ABSTRACT

Inter-organelle contact and communication between mitochondria and sarco/endoplasmic reticulum (SR/ER) maintain cellular homeostasis and are profoundly disturbed during tissue ischemia. We tested the hypothesis that the formin Diaphanous-1 (DIAPH1), which regulates actin dynamics, signal transduction and metabolic functions, contributes to these processes. We demonstrate that DIAPH1 interacts directly with Mitofusin-2 (MFN2) to shorten mitochondria-SR/ER distance, thereby enhancing mitochondria-ER contact in cells including cardiomyocytes, endothelial cells and macrophages. Solution structure studies affirm the interaction between the Diaphanous Inhibitory Domain and the cytosolic GTPase domain of MFN2. In male rodent and human cardiomyocytes, DIAPH1-MFN2 interaction regulates mitochondrial turnover, mitophagy, and oxidative stress. Introduction of synthetic linker construct, which shorten the mitochondria-SR/ER distance, mitigated the molecular and functional benefits of DIAPH1 silencing in ischemia. This work establishes fundamental roles for DIAPH1-MFN2 interaction in the regulation of mitochondria-SR/ER contact networks. We propose that targeting pathways that regulate DIAPH1-MFN2 interactions may facilitate recovery from tissue ischemia.


Subject(s)
Endothelial Cells , Mitochondria , Humans , Male , Endoplasmic Reticulum/metabolism , Endothelial Cells/metabolism , Formins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Ischemia/genetics , Ischemia/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction , Animals
6.
Commun Biol ; 6(1): 280, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932214

ABSTRACT

Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.


Subject(s)
Atherosclerosis , Lipid Metabolism , Animals , Female , Male , Mice , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Lipid Metabolism/genetics , Liver/metabolism , Phosphatidate Phosphatase/metabolism , Receptor for Advanced Glycation End Products/metabolism , Triglycerides/metabolism , Formins/genetics , Mice, Knockout
7.
Obesity (Silver Spring) ; 30(8): 1647-1658, 2022 08.
Article in English | MEDLINE | ID: mdl-35894077

ABSTRACT

OBJECTIVE: Aldose reductase (AKR1B1 in humans; Akr1b3 in mice), a key enzyme of the polyol pathway, mediates lipid accumulation in the murine heart and liver. The study objective was to explore potential roles for AKR1B1/Akr1b3 in the pathogenesis of obesity and its complications. METHODS: The study employed mice treated with an inhibitor of aldose reductase or mice devoid of Akr1b3 were used to determine their response to a high-fat diet. The study used subcutaneous adipose tissue-derived adipocytes to investigate mechanisms by which AKR1B1/Akr1b3 promotes diet-induced obesity. RESULTS: Increased expression of aldose reductase and senescence in the adipose tissue of humans and mice with obesity were demonstrated. Genetic deletion of Akr1b3 or pharmacological blockade of AKRIB3 with zopolrestat reduced high-fat-diet-induced obesity, attenuated markers of adipose tissue senescence, and increased lipolysis. CONCLUSIONS: AKR1B1/Akr1b3 modulation of senescence in subcutaneous adipose tissue contributes to aberrant metabolic responses to high-fat feeding. These data unveil new opportunities to target these pathways to combat obesity.


Subject(s)
Aldehyde Reductase , Subcutaneous Fat , Adipocytes/metabolism , Adipose Tissue/metabolism , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Aldo-Keto Reductases , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Obesity/metabolism , Subcutaneous Fat/metabolism
8.
FEBS J ; 288(11): 3424-3427, 2021 06.
Article in English | MEDLINE | ID: mdl-33565264

ABSTRACT

Heme is an iron-containing complex involved in fundamental cellular functions including oxygen transport. Free heme accumulation in blood, during intravascular hemolysis and other pathological conditions, triggers vascular dysfunction, pro-inflammatory, and prothrombotic cascade. Studies by May et al present a novel finding that heme is a ligand for RAGE and that heme binds to the V domain of RAGE and induces RAGE oligomerization. Furthermore, they show that the in vivo consequences of heme-RAGE interaction lead to a pro-inflammatory and procoagulant phenotype in the lungs. This discovery of heme as a ligand for RAGE sets the stage for probing the role of RAGE in heme homeostasis and the pathogenic role of heme-RAGE interaction in hemolytic diseases.


Subject(s)
Heme , Ligands , Receptor for Advanced Glycation End Products/genetics
9.
Front Endocrinol (Lausanne) ; 12: 636267, 2021.
Article in English | MEDLINE | ID: mdl-33776930

ABSTRACT

Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.


Subject(s)
Aldehyde Reductase/antagonists & inhibitors , Cardiovascular Diseases/complications , Cardiovascular Diseases/therapy , Diabetes Complications , Diabetes Mellitus/therapy , Enzyme Inhibitors/therapeutic use , Animals , Blood Glucose/analysis , Blood Platelets/metabolism , Cardiovascular System/metabolism , Disease Progression , Glucose/metabolism , Humans , Hyperglycemia/metabolism , Mice , Osmosis , Polymers/chemistry , Polymorphism, Genetic , Rats , Reperfusion Injury/complications
10.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34283206

ABSTRACT

In obesity complicated by hypertension, multicellular processes integrate to orchestrate cardiac fibrosis; the underlying mechanisms, however, remain elusive. In this issue of JEM, Cheng et al. (2021. J. Exp. Med. https://doi.org/10.1084/jem.20210252) describe adipocyte-macrophage collaboration to foster cardiac fibrosis through the actions of angiotensin II in obesity.


Subject(s)
Macrophages , Ventricular Remodeling , Adipocytes , Communication , Humans
11.
Front Cardiovasc Med ; 7: 37, 2020.
Article in English | MEDLINE | ID: mdl-32211423

ABSTRACT

Obesity and diabetes are leading causes of cardiovascular morbidity and mortality. Although extensive strides have been made in the treatments for non-diabetic atherosclerosis and its complications, for patients with diabetes, these therapies provide less benefit for protection from cardiovascular disease (CVD). These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify, especially as the epidemics of obesity and diabetes continue to expand. Hence, as hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the specific consequences of hyperglycemia on the vessel wall, immune cell perturbation, and endothelial dysfunction-all harbingers to the development of CVD. In this context, high levels of blood glucose stimulate the formation of the irreversible advanced glycation end products, the products of non-enzymatic glycation and oxidation of proteins and lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous kinase activity; the discovery that this intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, identifies the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of RAGE signaling. In human subjects, prominent signals for RAGE activity include the presence and levels of two forms of soluble RAGE, sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding RAGE) and DIAPH1, which display associations with CVD. This Review presents current knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences of diabetes, from obesity to CVD. Studies both from human subjects and animal models are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the cardiovascular consequences of these metabolic disorders.

12.
Front Physiol ; 8: 682, 2017.
Article in English | MEDLINE | ID: mdl-28943853

ABSTRACT

The mitochondrial arginase type II (Arg-II) has been shown to interact with ribosomal protein S6 kinase 1 (S6K1) and mitochondrial p66Shc and to promote cell senescence, apoptosis and inflammation under pathological conditions. However, the impact of Arg-II on organismal lifespan is not known. In this study, we demonstrate a significant lifespan extension in mice with Arg-II gene deficiency (Arg-II-/-) as compared to wild type (WT) control animals. This effect is more pronounced in the females than in the males. The gender difference is associated with higher Arg-II expression levels in the females than in the males in skin and heart at both young and old age. Ablation of Arg-II gene significantly reduces the aging marker p16INK4a levels in these tissues of old female mice, whereas in the male mice this effect of Arg-II deficiency is weaker. In line with this observation, age-associated increases in S6K1 signaling and p66Shc levels in heart are significantly attenuated in the female Arg-II-/- mice. In the male mice, only p66Shc but not S6K1 signaling is reduced. In summary, our study demonstrates that Arg-II may play an important role in the acceleration of aging in mice. Genetic disruption of Arg-II in mouse extends lifespan predominantly in females, which relates to inhibition of S6K1, p66Shc, and p16INK4a. Thus, Arg-II may represent a promising target to decelerate aging process and extend lifespan as well as to treat age-related diseases.

13.
Diabetes ; 66(6): 1636-1649, 2017 06.
Article in English | MEDLINE | ID: mdl-28356309

ABSTRACT

Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L-arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic ß-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II-/-) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and ß-cell mass, and more proliferative and less apoptotic ß-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II-/-) mice contains higher TNF-α levels than the young mice and stimulates ß-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to ß-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice.


Subject(s)
Acinar Cells/metabolism , Aging/genetics , Apoptosis/genetics , Arginase/genetics , Glucose Intolerance/genetics , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Tumor Necrosis Factor-alpha/metabolism , Aging/metabolism , Animals , Cytokines/genetics , Glucose Intolerance/metabolism , Glucose Tolerance Test , Immunoblotting , In Situ Nick-End Labeling , Insulin-Secreting Cells/pathology , Islets of Langerhans/pathology , Mice , Mice, Knockout , Organ Size , Pancreas/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Methodist Debakey Cardiovasc J ; 11(3): 166-71, 2015.
Article in English | MEDLINE | ID: mdl-26634024

ABSTRACT

Endothelium-derived nitric oxide (eNO) is a multifunctional signaling molecule critically involved in the maintenance of metabolic and cardiovascular homeostasis. In addition to its role as a potent endogenous vasodilator, eNO suppresses key processes in vascular lesion formation and opposes atherogenesis. This review discusses eNO as an antiatherogenic molecule and highlights factors that influence its bioavailability and therapeutic approaches to restore or enhance its levels.


Subject(s)
Atherosclerosis/enzymology , Endothelium, Vascular/enzymology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Signal Transduction , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Cardiovascular Agents/therapeutic use , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Gene Expression Regulation, Enzymologic , Humans , Nitric Oxide Synthase Type III/genetics , Plaque, Atherosclerotic , Signal Transduction/drug effects , Vasodilation
16.
Autophagy ; 10(12): 2223-38, 2014.
Article in English | MEDLINE | ID: mdl-25484082

ABSTRACT

Impaired autophagy function and enhanced ARG2 (arginase 2)-MTOR (mechanistic target of rapamycin) crosstalk are implicated in vascular aging and atherosclerosis. We are interested in the role of ARG2 and the potential underlying mechanism(s) in modulation of endothelial autophagy. Using human nonsenescent "young" and replicative senescent endothelial cells as well as Apolipoprotein E-deficient (apoe(-/-)Arg2(+/+)) and Arg2-deficient apoe(-/-) (apoe(-/-)arg2(-/-)) mice fed a high-fat diet for 10 wk as the atherosclerotic animal model, we show here that overexpression of ARG2 in the young cells suppresses endothelial autophagy with concomitant enhanced expression of RICTOR, the essential component of the MTORC2 complex, leading to activation of the AKT-MTORC1-RPS6KB1/S6K1 (ribosomal protein S6 kinase, 70kDa, polypeptide 1) cascade and inhibition of PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit). Expression of an inactive ARG2 mutant (H160F) had the same effect. Moreover, silencing RPS6KB1 or expression of a constitutively active PRKAA prevented autophagy suppression by ARG2 or H160F. In senescent cells, enhanced ARG2-RICTOR-AKT-MTORC1-RPS6KB1 and decreased PRKAA signaling and autophagy were observed, which was reversed by silencing ARG2 but not by arginase inhibitors. In line with the above observations, genetic ablation of Arg2 in apoe(-/-) mice reduced RPS6KB1, enhanced PRKAA signaling and endothelial autophagy in aortas, which was associated with reduced atherosclerosis lesion formation. Taken together, the results demonstrate that ARG2 impairs endothelial autophagy independently of the L-arginine ureahydrolase activity through activation of RPS6KB1 and inhibition of PRKAA, which is implicated in atherogenesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Arginase/metabolism , Atherosclerosis/metabolism , Autophagy/physiology , Signal Transduction , Animals , Atherosclerosis/pathology , Cellular Senescence/physiology , Diet, High-Fat , Humans , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice, Transgenic , Multiprotein Complexes/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
17.
Aging Cell ; 11(6): 1005-16, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22928666

ABSTRACT

Augmented activities of both arginase and S6K1 are involved in endothelial dysfunction in aging. This study was to investigate whether or not there is a crosstalk between arginase and S6K1 in endothelial inflammation and aging in senescent human umbilical vein endothelial cells and in aging mouse models. We show increased arginase-II (Arg-II) expression/activity in senescent endothelial cells. Silencing Arg-II in senescent cells suppresses eNOS-uncoupling, several senescence markers such as senescence-associated-ß-galactosidase activity, p53-S15, p21, and expression of vascular adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1). Conversely, overexpressing Arg-II in nonsenescent cells promotes eNOS-uncoupling, endothelial senescence, and enhances VCAM1/ICAM1 levels and monocyte adhesion, which are inhibited by co-expressing superoxide dismutase-1. Moreover, overexpressing S6K1 in nonsenescent cells increases, whereas silencing S6K1 in senescent cells decreases Arg-II gene expression/activity through regulation of Arg-II mRNA stability. Furthermore, S6K1 overexpression exerts the same effects as Arg-II on endothelial senescence and inflammation responses, which are prevented by silencing Arg-II, demonstrating a role of Arg-II as the mediator of S6K1-induced endothelial aging. Interestingly, mice that are deficient in Arg-II gene (Arg-II(-/-) ) are not only protected from age-associated increase in Arg-II, VCAM1/ICAM1, aging markers, and eNOS-uncoupling in the aortas but also reveal a decrease in S6K1 activity. Similarly, silencing Arg-II in senescent cells decreases S6K1 activity, demonstrating that Arg-II also stimulates S6K1 in aging. Our study reveals a novel mechanism of mutual positive regulation between S6K1 and Arg-II in endothelial inflammation and aging. Targeting S6K1 and/or Arg-II may decelerate vascular aging and age-associated cardiovascular disease development.


Subject(s)
Aging/genetics , Aorta/metabolism , Arginase/genetics , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/genetics , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Aging/metabolism , Aging/pathology , Animals , Aorta/pathology , Arginase/antagonists & inhibitors , Arginase/metabolism , Biomarkers/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Endothelium, Vascular/pathology , Female , Gene Expression Regulation , Gene Silencing , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Mice , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , RNA, Small Interfering/genetics , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
18.
Front Physiol ; 3: 337, 2012.
Article in English | MEDLINE | ID: mdl-22934083

ABSTRACT

Period2 (Per2) is an important component of the circadian clock. Mutation of this gene is associated with vascular endothelial dysfunction and altered glucose metabolism. The aim of this study is to further characterize whole body glucose homeostasis and endothelial nitric oxide (NO) production in response to insulin in the mPer2(Brdm1) mice. We show that mPer2(Brdm1) mice exhibit compromised insulin receptor activation and Akt signaling in various tissues including liver, fat, heart, and aortas with a tissue-specific heterogeneous diurnal pattern, and decreased insulin-stimulated NO release in the aortas in both active and inactive phases of the animals. As compared to wild type (WT) mice, the mPer2(Brdm1) mice reveal hyperinsulinemia, hypoglycemia with lower fasting hepatic glycogen content and glycogen synthase level, no difference in glucose tolerance and insulin tolerance. The mPer2(Brdm1) mice do not show increased predisposition to obesity either on normal chow or high fat diet compared to WT controls. Thus, mice with Per2 gene mutation show altered glucose homeostasis and compromised insulin-stimulated NO release, independently of obesity.

19.
J Am Heart Assoc ; 1(4): e000992, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23130157

ABSTRACT

BACKGROUND: Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS: In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS: Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).

20.
PLoS One ; 6(4): e19237, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21544240

ABSTRACT

Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20-24 months) as compared to the young animals (1-3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease.


Subject(s)
Aging/metabolism , Endothelial Cells/metabolism , Oxidative Stress/drug effects , Ribosomal Protein S6 Kinases/metabolism , Stilbenes/pharmacology , Adenoviridae/genetics , Aging/genetics , Animals , Aorta/drug effects , Aorta/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Humans , Immunoblotting , In Vitro Techniques , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Rats , Rats, Inbred WKY , Resveratrol , Ribosomal Protein S6 Kinases/genetics , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL