Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Am J Physiol Endocrinol Metab ; 326(6): E869-E887, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38775724

ABSTRACT

The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-wk aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.NEW & NOTEWORTHY Decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, which is likely mediated by androgen/androgen receptor expression. This study is the first to report the regulatory mechanism of chemerin in muscle mitochondria.


Subject(s)
Chemokines , Glucose , Lipid Metabolism , Mice, Knockout , Receptors, Androgen , Animals , Chemokines/metabolism , Male , Mice , Lipid Metabolism/physiology , Lipid Metabolism/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Glucose/metabolism , Diet, High-Fat , Diabetes Mellitus, Experimental/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Physical Conditioning, Animal/physiology , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Mitochondria/metabolism , Androgens/metabolism , Androgens/pharmacology , Muscle, Skeletal/metabolism
2.
Hum Brain Mapp ; 45(8): e26710, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853713

ABSTRACT

Cross-situational inconsistency is common in the expression of honesty traits; yet, there is insufficient emphasis on behavioral dishonesty across multiple contexts. The current study aimed to investigate behavioral dishonesty in various contexts and reveal the associations between trait honesty, behavioral dishonesty, and neural patterns of observing others behave honestly or dishonestly in videos (abbr.: (dis)honesty video-watching). First, the results revealed limitations in using trait honesty to reflect variations in dishonest behaviors and predict behavioral dishonesty. The finding highlights the importance of considering neural patterns in understanding and predicting dishonest behaviors. Second, by comparing the predictive performance of seven types of data across three neural networks, the results showed that functional connectivity in the hypothesis-driven network during (dis)honesty video-watching provided the highest predictive power in predicting multitask behavioral dishonesty. Last, by applying the feature elimination method, the midline self-referential regions (medial prefrontal cortex, posterior cingulate cortex, and anterior cingulate cortex), anterior insula, and striatum were identified as the most informative brain regions in predicting behavioral dishonesty. In summary, the study offered insights into individual differences in deception and the intricate connections among trait honesty, behavioral dishonesty, and neural patterns during (dis)honesty video-watching.


Subject(s)
Deception , Magnetic Resonance Imaging , Nerve Net , Humans , Male , Female , Adult , Young Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Connectome , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Video Recording , Social Behavior
3.
Cytokine ; 181: 156689, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981157

ABSTRACT

BACKGROUND: With aging, white adipose tissue (WAT) undergoes distribution change and browning inhibition, which could be attenuated by exercise. Adipokine chemerin exerts roles in the above changes of WAT, and our previous studies demonstrated the effect of decreased chemerin on exercise-induced improvement of glucose and lipid metabolism in high fat diet (HFD) feeding male mice, so this study is to clarify whether chemerin's effects on glucose and lipid metabolism are associated with the distribution and browning of WAT. METHODS: After diet and exercise interventions, body weight and adipose tissue contents in different depots of male mice were weighed, body composition and energy metabolism parameters were determined by Echo MRI Body Composition Analyzer and metabolic cage, respectively. The levels of serum adiponectin and leptin were detected by ELISA, and the protein levels of PGC-1α, UCP1, adiponectin and leptin in WAT were measured by Western blot. RESULTS: Chemerin knockout exacerbated HFD-induced weight gain, upregulated the increases of visceral and subcutaneous WAT (vWAT and sWAT, especial in sWAT), and inhibited WAT browning, but improved blood lipid. Exercise reduced the body weight and WAT distribution, increased sWAT browning and further improved blood lipid in aged HFD male mice, which were abrogated by chemerin knockout. Detrimental alterations of leptin, adiponectin and adiponectin/leptin ratio were discovered in the serum and WAT of aged HFD chemerin(-/-) mice; and exercise-induced beneficial changes in these adipokines were blocked by chemerin knockout. CONCLUSION: Chemerin influences blood lipid of aged male mice under HFD and exercise states through regulating the distribution and browning of WAT, which might be related to the changes of adiponectin, leptin and adiponectin/leptin ratio.

4.
Fish Shellfish Immunol ; 148: 109510, 2024 May.
Article in English | MEDLINE | ID: mdl-38521143

ABSTRACT

The signal transducer and activator of transcription 2 (STAT2), a downstream factor of type I interferons (IFNs), is a key component of the cellular antiviral immunity response. However, the role of STAT2 in the upstream of IFN signaling, such as the regulation of pattern recognition receptors (PRRs), remains unknown. In this study, STAT2 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized. The open reading frame (ORF) of bcSTAT2 comprises 2523 nucleotides and encodes 841 amino acids, which presents the conserved structure to that of mammalian STAT2. The dual-luciferase reporter assay and the plaque assay showed that bcSTAT2 possessed certain IFN-inducing ability and antiviral ability against both spring viremia of carp virus (SVCV) and grass carp reovirus (GCRV). Interestingly, we detected the association between bcSTAT2 and bcRIG-I through co-immunoprecipitation (co-IP) assay. Moreover, when bcSTAT2 was co-expressed with bcRIG-I, bcSTAT2 obviously suppressed bcRIG-I-induced IFN expression and antiviral activity. The subsequent co-IP assay and immunoblotting (IB) assay further demonstrated that bcSTAT2 inhibited K63-linked polyubiquitination but not K48-linked polyubiquitination of bcRIG-I, however, did not affect the oligomerization of bcRIG-I. Thus, our data conclude that black carp STAT2 negatively regulates RIG-I through attenuates its K63-linked ubiquitination, which sheds a new light on the regulation of the antiviral innate immunity cascade in vertebrates.


Subject(s)
Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Rhabdoviridae Infections , Animals , Carps/genetics , Carps/metabolism , Rhabdoviridae Infections/veterinary , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Reoviridae/physiology , Immunity, Innate/genetics , Fish Proteins , Mammals/metabolism
5.
BMC Vet Res ; 20(1): 171, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702696

ABSTRACT

BACKGROUND: Coccidiosis is one of the most frequently reported diseases in chickens, causing a significant economic impact on the poultry industry. However, there have been no previous studies evaluating the prevalence of this disease in broiler farms in Guangdong province. Therefore, this study aims to conduct an epidemiological investigation into the occurrence of Eimeria species and associated risk factors in intensive management conditions across four regions in Guangdong province, China. A total of 394 fecal samples were collected from 89 broiler farms in Guangdong province. The prevalence of Eimeria species infection was determined using PCR, and the occurrence of Clostridium perfringens type A was assessed using quantitative real-time PCR. RESULTS: The results showed an overall prevalence of 98.88% (88/89) at the farm level and 87.06% (343/394) at the flock level. All seven Eimeria species were identified, with E. acervulina (72.53%; 64/89), E. tenella (68.54%; 61/89), and E. mitis (66.29%; 59/89) at the farm level, and E. acervulina (36.55%; 144/394), E. mitis (35.28%; 139/394), and E. tenella (34.01%; 134/394) at the flock level. The predominant species combination observed was a co-infection of all seven Eimeria species (6.74%; 6/89), followed by a combination of E. acervulina, E. tenella, E. mitis, E. necatrix, E. brunetti, and E. maxima (5.62%, 5/89). A combination of E. acervulina, E. tenella, E. mitis, E. necatrix, E. brunetti, and E. praecox (4.49%; 4/89) was also observed at the farm level. Furthermore, the study identified several potential risk factors associated with the prevalence of Eimeria species, including farm location, chicken age, drinking water source, control strategy, and the presence of C. perfringens type A were identified as potential risk factors associated with prevalence of Eimeria species. Univariate and multivariate analyses revealed a significant association between E. necatrix infection and both grower chickens (OR = 10.86; 95% CI: 1.92-61.36; p < 0.05) and adult chickens (OR = 24.97; 95% CI: 4.29-145.15; p < 0.001) compared to starter chickens at the farm level. Additionally, farms that used groundwater (OR = 0.27; 95% CI: 0.08-0.94; p < 0.05) were less likely to have E. maxima compared to those that used running water. At the flock level, the prevalence of E. tenella was significantly higher in the Pearl River Delta (OR = 2.48; 95% CI: 1.0-6.15; p = 0.05) compared to eastern Guangdong. Interestingly, flocks with indigenous birds were less likely to have E. brunetti (OR = 0.48; 95% CI: 0.26-0.89; p < 0.05) compared to flocks with indigenous crossbred birds. Furthermore, flocks that used anticoccidial drugs (OR = 0.09; 95% CI: 0.03-0.31; p < 0.001) or a combination of vaccines and anticoccidial drugs (OR = 0.06; 95% CI: 0.01-0.25; p < 0.001) were less likely to be positive for E. tenella compared to flocks that only used vaccines. Finally, flocks with C. perfringens type A infection were significantly more likely to have E. necatrix (OR = 3.26; 95% CI: 1.96-5.43; p < 0.001), E. tenella (OR = 2.14; 95% CI: 1.36-3.36; p < 0.001), E. brunetti (OR = 2.48; 95% CI: 1.45-4.23; p < 0.001), and E. acervulina (OR = 2.62; 95% CI: 1.69-4.06; p < 0.001) compared to flocks without C. perfringens type A. CONCLUSIONS: This study conducted an investigation on the prevalence, distribution, and risk factors associated with Eimeria species infection in broiler chickens in Guangdong. The farm-level prevalence of Eimeria species was higher than the previous prevalence figures for other areas and countries. E. brunetti was identified at higher prevalence in Guangdong than previously survived prevalence in different regions in China. Farm location, chicken age, drinking water source, control strategy, and the presence of C. perfringens type A were considered as potential risk factors associated with prevalence of Eimeria species. It is imperative to underscore the necessity for further surveys to delve deeper into the occurrence of Eimeria species under intensive management conditions for different flock purposes.


Subject(s)
Chickens , Coccidiosis , Eimeria , Poultry Diseases , Animals , Eimeria/isolation & purification , Eimeria/classification , Coccidiosis/epidemiology , Coccidiosis/veterinary , Coccidiosis/parasitology , China/epidemiology , Poultry Diseases/epidemiology , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Prevalence , Risk Factors , Feces/parasitology , Feces/microbiology , Clostridium perfringens/isolation & purification
6.
Anaerobe ; 87: 102856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609034

ABSTRACT

Clostridium perfringens, a Gram-positive bacterium, causes intestinal diseases in humans and livestock through its toxins, related to alpha toxin (CPA), beta toxin (CPB), C. perfringens enterotoxin (CPE), epsilon toxin (ETX), Iota toxin (ITX), and necrotic enteritis B-like toxin (NetB). These toxins disrupt intestinal barrier, leading to various cell death mechanisms such as necrosis, apoptosis, and necroptosis. Additionally, non-toxin factors like adhesins and degradative enzymes contribute to virulence by enhancing colonization and survival of C. perfringens. A vicious cycle of intestinal barrier breach, misregulated cell death, and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. Understanding these mechanisms is essential for developing targeted therapies against C. perfringens-associated intestinal diseases.


Subject(s)
Bacterial Toxins , Clostridium Infections , Clostridium perfringens , Epithelial Cells , Humans , Animals , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Epithelial Cells/microbiology , Epithelial Cells/drug effects , Clostridium perfringens/pathogenicity , Clostridium perfringens/physiology , Clostridium Infections/microbiology , Clostridium Infections/pathology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology
7.
J Sci Food Agric ; 104(4): 2477-2483, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37968892

ABSTRACT

BACKGROUND: Wheat gluten (WG) containing gliadin and glutenin are considered the main allergens in wheat allergy as a result of their glutamine-rich peptides. Deamidation is a viable and efficient approach for protein modifications converting glutamine into glutamic acid, which may have the potential for allergenicity reduction of WG. RESULTS: Deamidation by citric acid was performed to investigate the effects on structure, allergenicity and noodle textural properties of wheat gluten (WG). WG was heated at 100 °C in 1 m citric acid to yield deamidated WG with degrees of deamidation (DD) ranging from DWG-25 (25% DD) to DWG-70 (70% DD). Fourier-transform infrared and intrinsic fluorescence spectroscopy results suggested the unfolding of WG structure during deamidation, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed molecular weight shifts at the 35-63 kDa region, suggesting that the deamidation mainly occurred on low molecular weight glutenin subunits and γ- gliadin of the WG. An enzyme-linked immunosorbent assay of deamidated WG revealed a decrease in absorbance and immunoblotting indicated that the intensities of protein bands at 35-63 kDa decreased, which suggested that deamidation of WG might have caused a greater loss of epitopes than the generation of new epitopes caused by unfolding of WG, and thereby reduction of the immunodominant immunoglobulin E binding capacity, ultimately leading to the decrease in allergenicity. DWG-25 was used in the preparation of recombinant hypoallergenic noodles, and the hardness, elasticity, chewiness and gumminess were improved significantly by the addition of azodicarbonamide. CONCLUSION: The present shows the potential for deamidation of the WG products used in novel hypoallergenic food development. © 2023 Society of Chemical Industry.


Subject(s)
Gliadin , Wheat Hypersensitivity , Humans , Allergens/chemistry , Glutamine , Glutens/chemistry , Epitopes/chemistry , Citric Acid
8.
Neuroimage ; 279: 120303, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37536525

ABSTRACT

Convolutional neural networks (CNN) have demonstrated good accuracy and speed in spatially registering high signal-to-noise ratio (SNR) structural magnetic resonance imaging (sMRI) images. However, some functional magnetic resonance imaging (fMRI) images, e.g., those acquired from arterial spin labeling (ASL) perfusion fMRI, are of intrinsically low SNR and therefore the quality of registering ASL images using CNN is not clear. In this work, we aimed to explore the feasibility of a CNN-based affine registration network (ARN) for registration of low-SNR three-dimensional ASL perfusion image time series and compare its performance with that from the state-of-the-art statistical parametric mapping (SPM) algorithm. The six affine parameters were learned from the ARN using both simulated motion and real acquisitions from ASL perfusion fMRI data and the registered images were generated by applying the transformation derived from the affine parameters. The speed and registration accuracy were compared between ARN and SPM. Several independent datasets, including meditation study (10 subjects × 2), bipolar disorder study (26 controls, 19 bipolar disorder subjects), and aging study (27 young subjects, 33 older subjects), were used to validate the generality of the trained ARN model. The ARN method achieves superior image affine registration accuracy (total translation/total rotation errors of ARN vs. SPM: 1.17 mm/1.23° vs. 6.09 mm/12.90° for simulated images and reduced MSE/L1/DSSIM/Total errors of 18.07% / 19.02% / 0.04% / 29.59% for real ASL test images) and 4.4 times (ARN vs. SPM: 0.50 s vs. 2.21 s) faster speed compared to SPM. The trained ARN can be generalized to align ASL perfusion image time series acquired with different scanners, and from different image resolutions, and from healthy or diseased populations. The results demonstrated that our ARN markedly outperforms the iteration-based SPM both for simulated motion and real acquisitions in terms of registration accuracy, speed, and generalization.


Subject(s)
Deep Learning , Humans , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Neural Networks, Computer , Algorithms , Spin Labels , Image Processing, Computer-Assisted/methods , Cerebrovascular Circulation
9.
Hum Brain Mapp ; 44(3): 948-969, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36308407

ABSTRACT

As one of the commonly used folk psychological concepts, self-deception has been intensively discussed yet is short of solid ground from cognitive neuroscience. Self-deception is a biased cognitive process of information to obtain or maintain a false belief that could be both self-enhancing or self-diminishing. Study 1 (N = 152) captured self-deception by adopting a modified numerical discrimination task that provided cheating opportunities, quantifying errors in predicting future performance (via item-response theory model), and measuring the belief of how good they are at solving the task (i.e., self-efficacy belief). By examining whether self-efficacy belief is based upon actual ability (true belief) or prediction errors (false belief), Study 1 showed that self-deception occurred in the effortless (easier access to answer cues) rather than effortful (harder access to answer cues) cheating opportunity conditions, suggesting high ambiguity in attributions facilitates self-deception. Studies 2 and 3 probed the neural source of self-deception, linking self-deception with the metacognitive process. Both studies replicated behavioral results from Study 1. Study 2 (ERP study; N = 55) found that the amplitude of frontal slow wave significantly differed between participants with positive/self-enhancing and negative/self-diminishing self-deceiving tendencies in incorrect predictions while remaining similar in correct predictions. Study 3 (functional magnetic resonance imaging study; N = 33) identified self-deceiving associated activity in the anterior medial prefrontal cortex and showed that effortless cheating context increased cheating behaviors that further facilitated self-deception. Our findings suggest self-deception is a false belief associated with a distorted metacognitive mental process that requires ambiguity in attributions of behaviors.


Subject(s)
Metacognition , Humans , Deception , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Cues
10.
BMC Microbiol ; 23(1): 136, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37202716

ABSTRACT

BACKGROUND: Carbapenem-resistant gram-negative bacilli (CR-GNB) have been increasingly reported in China. However, dynamic monitoring data on molecular epidemiology of CR-GNB are limited in pediatric patients. RESULTS: 300 CR-GNB isolates (200 Carbapenem-resistant K. pneumoniae (CRKP), 50 carbapenem-resistant A.baumannii (CRAB) and 50 carbapenem-resistant P. aeruginosa (CRPA)) were investigated. The predominant carbapenemase gene was blaNDM-1 (73%) and blaKPC-2 (65%) in neonates and non-neonates. Meanwhile, the predominant STs were ST11 (54%) in neonates and ST17 (27.0%) and ST278 (20.0%) in non-neonates. Notably, a shift in the dominant sequence type of CRKP infections from ST17 /ST278-NDM-1 to ST11-KPC-2 was observed during the years 2017-2021 and KPC-KP showed relatively higher resistance to aminoglycosides and quinolones than NDM-KP.BlaOXA-23 was isolated from all the CRAB isolates while only one isolate expressing blaBIC and 2 isolates expressing blaVIM-2 were found in CRPA isolates. ST195 (22.0%) and ST244 (24.0%) were the most common in CRAB and CRPA isolates and all the STs of CRAB belonged to CC92 while CRPA presents ST types with diversity distribution. CONCLUSION: CRKP showed different molecular phenotypes in neonates and non-neonates and was changing dynamically and high-risk clone of ST11 KPC-KP should be paid more attention. Most CRKP and CRAB strains shared the same CCs, suggesting that intrahospital transmission may occur, and large-scale screening and more effective measures are urgently needed.


Subject(s)
Carbapenems , beta-Lactamases , Carbapenems/pharmacology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Molecular Epidemiology , China/epidemiology , Aminoglycosides , Gram-Negative Bacteria/genetics , Klebsiella pneumoniae/genetics
11.
Int Microbiol ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37857932

ABSTRACT

OBJECTIVES: To investigate the clinical characteristics and molecular epidemiology of CRKP infection in neonatal patients in a children's hospital in China from 2017 to 2021. METHODS: Species identification and antibiotic susceptibilities were tested with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and VITEK 2 systems. The clinical data were collected from medical records. Carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates were investigated by antimicrobial susceptibility testing, carbapenemase genes and multilocus sequence typing. RESULTS: Six kinds of resistant genes and 23 STs were detected. BlaNDM-1 (n=83, 55.3%) was the predominant carbapenemase gene, followed by blaKPC-2 (n=45, 30.0%), blaNDM-5 (n=7, 4.7%), blaIMP-38 (n=6, 4.0%). BlaNDM-1 was predominant in 2017 and 2018, whereas blaKPC-2 increased in 2019 and became the predominant gene from 2020 to 2021. ST11 accounted for most infections (n=35, 23.3%), followed by ST278 (n=23, 15.3%), ST17 (n=17, 11. 3%) and ST2735 (n=16, 10.7%). ST278 and ST17 were predominant in 2017 and 2018, whereas ST11 increased in 2019 and became the predominant sequence type from 2020 to 2021. Compared with blaNDM-1, the CRKP strains producing blaKPC-2 were characterized by high resistance to gentamicin, amikacin and levofloxacin and the change trend of drug resistance rate before and after COVID-19 was consistent with that of blaNDM-1 and blaKPC-2. CONCLUSIONS: The main sequence type of CRKP infection changed dynamically from ST278-NDM-1 to ST11-KPC-2 during the years 2017-2021 in the newborns. Antibiotic exposure and the prevalence of COVID-19 since 2020 may have led to changes in hospital population and lead to the changes.

12.
Biochem Biophys Res Commun ; 596: 36-42, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35108652

ABSTRACT

Both MLL-AF9 and MLL-ENL leukemia fusion proteins drive oncogenic transformation of hematopoietic cells through their N-terminal DNA/histone binding mixed-lineage leukemia 1 domain and C-terminal fragment of AF9 or ENL containing an unstructured linker region and the ANC1 homology domain, which recruits transcription factors. Despite of their structural similarity, acute myeloid leukemia (AML) patients bearing MLL-ENL show more adverse outcomes compared to those with MLL-AF9. We recapitulated the clinical patterns of these two MLL-fusions driven AMLs using murine models and found that MLL-ENL AML cells showed slower cell cycle progression and more resistance to standard chemotherapy than MLL-AF9 cells. These phenotypes were primarily controlled by the linker regions of ENL and a highly conserved lysine residue K469 within. Substitution of K469 with an acetylated mimic glutamine abolished the ability of MLL-ENL to suppress proliferation and promote chemo-resistance. We showed that deacetylase Sirt2 might act as an upstream regulator of MLL-ENL. Deletion of Sirt2 promoted proliferation of AML cells with either MLL fusions. Importantly, loss of Sirt2 greatly enhanced the sensitivity of the MLL-ENL AML cells to chemo-treatment. Taken together, our study uncovered a unique regulatory role of Sirt2 in leukemogenesis and suggested targeting SIRT2 as a new way to sensitize MLL-ENL AML patience for chemotherapy.


Subject(s)
Cell Proliferation/genetics , Gene Expression Regulation, Leukemic/genetics , Leukemia, Myeloid/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Sirtuin 2/genetics , Acute Disease , Amino Acid Sequence , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cytarabine/administration & dosage , Doxorubicin/administration & dosage , Gene Expression Regulation, Leukemic/drug effects , Kaplan-Meier Estimate , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Sequence Homology, Amino Acid , Sirtuin 2/metabolism , Tumor Cells, Cultured
13.
Cell Mol Biol (Noisy-le-grand) ; 68(1): 75-88, 2022 May 22.
Article in English | MEDLINE | ID: mdl-35809325

ABSTRACT

The Chinese traditional soybean product, sufu, is getting increasingly popular in Asia for its special taste and rich nutrition. In this paper, physicochemical properties of sufu during fermentation, isolation and characterization of BA-producing bacteria, as well as their decarboxylase activities were thoroughly investigated. Tyramine, putrescine, phenylethylamine and cadaverine were the main BA in sufu fermentation. Tyramine level increased drastically to reach 513.72 mg/kg during sufu ripening, posing potential health risks. During sufu fermentation, there was a positive correlation between amino nitrogen and BA, yet no significant correlation was found between BAs with pH and total acidity. Additionally, 23 strains of tyramine- and phenylethylamine-producing bacteria harboring the TDC gene, including Enterococcus faecalis 45, Enterococcus faecium 36, Pediococcus acidilactici 310 and Pediococcus pentosaceus 27 that were responsible for tyramine production in sufu have been characterized. The current study provides insights into understanding the production of tyramine in sufu by microorganisms, which laid the groundwork for controlling biogenic amine production in fermented soybean products.


Subject(s)
Biogenic Amines , Tyramine , Bacteria , Fermentation , Phenethylamines , Glycine max/metabolism , Glycine max/microbiology , Tyramine/isolation & purification
14.
Neuroimage ; 238: 118268, 2021 09.
Article in English | MEDLINE | ID: mdl-34139359

ABSTRACT

Deception emerges in early childhood and prevails in adults. Activation patterns in previous adults' task-state functional magnetic resonance imaging (fMRI), though sensitive to state honesty on a specific decision, are less reliable reflecting trait honesty. Besides of state honesty, most previous neuroimaging studies about dishonesty suffer the generalization problem due to the major focus on adults with children unexplored. To investigate honesty associated functional brain networks variations, 98 healthy adults (Age: 18-28 y.o.; 49 males and 49 females) were invited to participate in a resting-state functional magnetic resonance imaging (rfMRI) study (Study 1). We investigated how functional connections between the caudate and the medial prefrontal cortex (mPFC) change among adults who differ in self-reported trait honesty. Results showed that adults with higher trait honesty have increased functional connectivity from the caudate to the mPFC, which is identified as an honesty-related hub region in global brain connectivity analysis and connects more tightly to a wide range of brain regions including the amygdala. Study 2 compared functional connectivity between children with high vs. low lying frequencies (Age: 6-16 y.o.; 61 males and 39 females) based on a publicly accessible database of rfMRI. Consistent with findings in adults, increased functional connectivity from the caudate to the mPFC was found in less frequently lying children. Despite different honesty indicators of self-reported honesty trait in adults and parent-reported lying patterns in children, consistent findings have been noted in the two samples with regards to functional connectivity variations between reward-related and self-related brain regions. These findings suggest functional connectivity alterations between the caudate and the mPFC contribute to honesty variations in both adults and children.


Subject(s)
Caudate Nucleus/diagnostic imaging , Emotions/physiology , Prefrontal Cortex/diagnostic imaging , Adolescent , Adult , Caudate Nucleus/physiology , Child , Deception , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Prefrontal Cortex/physiology , Young Adult
15.
Horm Behav ; 133: 105006, 2021 07.
Article in English | MEDLINE | ID: mdl-34087669

ABSTRACT

Obesity is strongly related to leptin resistance that refers to the state in which leptin fails to inhibit appetite, enhance energy expenditure and regulate glycolipid metabolism, whereas decreasing leptin resistance is important for obesity treatment. Leptin resistance that develops in brain and also directly in peripheral tissues is considered as central and peripheral leptin resistance, respectively. The mechanism of central leptin resistance is the focus of intensive studies but still not totally clarified. A challenged notion about the effect of impaired leptin BBB transport emerges and a concept of "selective leptin resistance" is discussed. Peripheral leptin resistance, especially leptin resistance in muscle, has drawn more attention recently, while its mechanism remains unclear. Exercise is an effective way to reduce obesity, which is at least in part due to the alleviation of leptin resistance. Here, we summarized newly discovered data about the associated factors of central leptin resistance and peripheral leptin resistance, and the actions of exercise on leptin resistance, which is important to understand the mechanisms of leptin resistance and exercise-induced alleviation of leptin resistance, and to facilitate clinical application of leptin in obesity treatment.


Subject(s)
Leptin , Obesity , Brain/metabolism , Energy Metabolism , Exercise , Humans , Leptin/metabolism , Obesity/therapy
16.
Med Sci Monit ; 26: e926780, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33079922

ABSTRACT

BACKGROUND Cervical cancer threatens women's health worldwide. Verteporfin (VP), a small-molecule YAP1 inhibitor, inhibits cancer cell growth. This study investigated whether VP could inhibit the proliferation and promote the apoptosis of cervical cancer cells by decreasing SULT2B1 expression. MATERIAL AND METHODS Normal and cancerous cervical cell proliferation after VP treatment was detected by CCK-8 assay. HeLa cell migration, invasion, and apoptosis after VP treatment and transfection were analyzed by wound healing assay, transwell assay, and TUNEL assay, respectively. The expression of related proteins was determined by western blot analysis. Western blot and RT-qPCR analysis detected mRNA and protein expression of SULT2B1. RESULTS Different VP concentrations (0.5, 1, 2, and 5 µM) inhibited the viability of HeLa cells and had no obvious effect on H8 cells. Therefore, 5 µM VP was selected for subsequent experiments. VP inhibited the proliferation, migration, and invasion of HeLa cells and promoted their apoptosis. Bcl-2 expression decreased, and expression of Bax, caspase-3, and caspase-9 in VP-treated HeLa cells increased. SULT2B1 expression increased in cervical cancer cells compared with normal cervical cells. Furthermore, SULT2B1 expression increased in HeLa cells and VP suppressed SULT2B1 expression. SULT2B1 overexpression reduced the inhibiting effect of VP on the proliferation, migration, and apoptosis of HeLa cells, and reduced VP effect on apoptosis of HeLa cells. SULT2B1 overexpression upregulated the Bcl-2 expression and downregulated the expression of Bax, caspase-3, and caspase-9 in VP-treated HeLa cells. CONCLUSIONS VP inhibited the proliferation, migration, and invasion and promoted apoptosis of cervical cancer cells by decreasing SULT2B1 expression.


Subject(s)
Antineoplastic Agents , Apoptosis/drug effects , Cell Proliferation/drug effects , Sulfotransferases , Uterine Cervical Neoplasms/drug therapy , Verteporfin , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/metabolism , Cell Movement/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Neoplasm Invasiveness , Sulfotransferases/antagonists & inhibitors , Sulfotransferases/metabolism , Uterine Cervical Neoplasms/pathology , Verteporfin/pharmacology
17.
BMC Anesthesiol ; 20(1): 12, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31918664

ABSTRACT

BACKGROUND: To investigate the effect and mechanisms of exogenous hydrogen sulfide in surgery-induced neuroinflammatory cognitive dysfunction. METHODS: C57BL/6 J male mice (n = 140) were used and randomly divided into seven groups: the sham group, surgery group, GYY4137 group, L-NAME group, surgery+GYY4137 group, surgery +L-NAME group, and surgery+GYY4137 + L-NAME group. After the interventions, open field tests (OFT) and the Morris water maze (MWM) test were conducted to evaluate learning and memory abilities in the mice. ELISAs, nitrate reductase assays, and Western blots (WB) were conducted to evaluate interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and antioxidant enzyme superoxide dismutase (SOD) levels. Furthermore, the expression level of microglial marker ionized calcium binding adaptor molecule 1 (IBA) in the hippocampal CA1 and CA3 areas was detected by an immunohistochemical (IHC) assay and apoptotic cells were observed using terminal deoxynucleotidyl transferase dUTP end-labeling (TUNEL) staining kits. RESULTS: We found that surgery induced neuroinflammatory cognitive dysfunction, oxidative stress, microglial activation, and cell apoptosis in the hippocampus. Moreover, following surgery, NO and iNOS levels were elevated in the hippocampus. Notably, all the effects caused by surgery were reversed by the H2S donor GYY4137 or the iNOS inhibitor N(gamma)-nitro-L-arginine methyl ester (L-NAME). However, the combined application of GYY4137 and L-NAME was not superior to treatment with either agent alone and the effect of GYY4137 was similar to that of L-NAME. CONCLUSION: The long-acting hydrogen sulfide donor GYY4137 had an ability to reversed the cognitive deficits and inflammation caused by carotid artery exposure surgery. This implies that NO signaling pathways might participate in this process. These results indicate that exogenous H2S may be a promising therapy for POCD.


Subject(s)
Cognitive Dysfunction/prevention & control , Encephalitis/prevention & control , Hydrogen Sulfide/therapeutic use , Nitric Oxide Donors/pharmacology , Nitric Oxide/antagonists & inhibitors , Postoperative Complications/prevention & control , Signal Transduction/drug effects , Animals , Brain Chemistry/drug effects , Cognitive Dysfunction/psychology , Encephalitis/psychology , Enzyme Inhibitors/pharmacology , Hippocampus , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred C57BL , Morpholines , Motor Activity/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Organothiophosphorus Compounds , Postoperative Complications/psychology
18.
Hum Brain Mapp ; 40(4): 1101-1113, 2019 03.
Article in English | MEDLINE | ID: mdl-30353970

ABSTRACT

People tend to lie in varying degrees. To advance our understanding of the underlying neural mechanisms of this heterogeneity, we investigated individual differences in self-serving lying. We performed a functional magnetic resonance imaging study in 37 participants and introduced a color-reporting game where lying about the color would in general lead to higher monetary payoffs but would also be punished if get caught. At the behavioral level, individuals lied to different extents. Besides, individuals who are more dishonest showed shorter lying response time, whereas no significant correlation was found between truth-telling response time and the degree of dishonesty. At the neural level, the left caudate, ventromedial prefrontal cortex (vmPFC), right inferior frontal gyrus (IFG), and left dorsolateral prefrontal cortex (dlPFC) were key regions reflecting individual differences in making dishonest decisions. The dishonesty associated activity in these regions decreased with increased dishonesty. Subsequent generalized psychophysiological interaction analyses showed that individual differences in self-serving lying were associated with the functional connectivity among the caudate, vmPFC, IFG, and dlPFC. More importantly, regardless of the decision types, the neural patterns of the left caudate and vmPFC during the decision-making phase could be used to predict individual degrees of dishonesty. The present study demonstrated that lying decisions differ substantially from person to person in the functional connectivity and neural activation patterns which can be used to predict individual degrees of dishonesty.


Subject(s)
Brain/physiopathology , Deception , Individuality , Adult , Female , Humans , Magnetic Resonance Imaging , Male
19.
Hum Brain Mapp ; 40(14): 4072-4090, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31188535

ABSTRACT

Understanding the correlation structure associated with brain regions is a central goal in neuroscience, as it informs about interregional relationships and network organization. Correlation structure can be conveniently captured in a matrix that indicates the relationships among brain regions, which could involve electroencephalogram sensors, electrophysiology recordings, calcium imaging data, or functional magnetic resonance imaging (FMRI) data-We call this type of analysis matrix-based analysis, or MBA. Although different methods have been developed to summarize such matrices across subjects, including univariate general linear models (GLMs), the available modeling strategies tend to disregard the interrelationships among the regions, leading to "inefficient" statistical inference. Here, we develop a Bayesian multilevel (BML) modeling framework that simultaneously integrates the analyses of all regions, region pairs (RPs), and subjects. In this approach, the intricate relationships across regions as well as across RPs are quantitatively characterized. The adoption of the Bayesian framework allows us to achieve three goals: (a) dissolve the multiple testing issue typically associated with seeking evidence for the effect of each RP under the conventional univariate GLM; (b) make inferences on effects that would be treated as "random" under the conventional linear mixed-effects framework; and (c) estimate the effect of each brain region in a manner that indexes their relative "importance". We demonstrate the BML methodology with an FMRI dataset involving a cognitive-emotional task and compare it to the conventional GLM approach in terms of model efficiency, performance, and inferences. The associated program MBA is available as part of the AFNI suite for general use.


Subject(s)
Bayes Theorem , Brain/physiology , Models, Neurological , Algorithms , Computer Simulation , Humans , Magnetic Resonance Imaging , Neuroimaging
20.
Brain Behav Immun ; 80: 657-666, 2019 08.
Article in English | MEDLINE | ID: mdl-31078690

ABSTRACT

Major depressive disorder is a heterogeneous disease involving widespread disruptions in functional brain networks, the neurobiological mechanisms of which are poorly understood. Amassing evidence supports innate immune activation as one pathophysiologic mechanism contributing to depression in a subgroup of patients with elevated inflammatory markers. Although inflammation is known to alter monoamine and glutamate neurotransmitters, little work has been done to understand its role in network dysfunction in patients with depression. Here we conducted a large-scale network-based analyses of resting-state functional magnetic resonance imaging (rfMRI) data acquired from depressed patients with varying levels of inflammation to develop a comprehensive characterization of network alterations as an effect of inflammation. Complementary approaches of global brain connectivity and parcellation-based network analysis applied to the whole brain revealed that increased plasma C-reactive protein (CRP) was associated with reduced functional connectivity in a widely-distributed network including ventral striatum, parahippocampal gyrus/amygdala, orbitofrontal and insular cortices, and posterior cingulate cortex. These broad alterations were centralized in the ventral medial prefrontal cortex (vmPFC), representing a hub for the effects of inflammation on network function in the whole brain. When feeding the identified multivariate network features into a machine learning algorithm of support vector regression, we achieved high prediction accuracies for depressive symptoms that have been associated with inflammation in previous studies including anhedonia and motor slowing. These findings extend and broaden previous observations from hypothesis-driven studies, providing further support for inflammation as a distinct contributing factor to network dysfunction and symptom severity in depression.


Subject(s)
Depressive Disorder, Major/physiopathology , Neural Pathways/physiopathology , Prefrontal Cortex/metabolism , Adult , Amygdala/metabolism , Anhedonia , Brain/metabolism , Brain Mapping/methods , C-Reactive Protein/metabolism , Cerebral Cortex/metabolism , Depression/physiopathology , Female , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Reward
SELECTION OF CITATIONS
SEARCH DETAIL