Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Med Inform Decis Mak ; 21(1): 61, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33596898

ABSTRACT

BACKGROUND: The electronic health record (EHR) holds the prospect of providing more complete and timely access to clinical information for biomedical research, quality assessments, and quality improvement compared to other data sources, such as administrative claims. In this study, we sought to assess the completeness and timeliness of structured diagnoses in the EHR compared to computed diagnoses for hypertension (HTN), hyperlipidemia (HLD), and diabetes mellitus (DM). METHODS: We determined the amount of time for a structured diagnosis to be recorded in the EHR from when an equivalent diagnosis could be computed from other structured data elements, such as vital signs and laboratory results. We used EHR data for encounters from January 1, 2012 through February 10, 2019 from an academic health system. Diagnoses for HTN, HLD, and DM were computed for patients with at least two observations above threshold separated by at least 30 days, where the thresholds were outpatient blood pressure of ≥ 140/90 mmHg, any low-density lipoprotein ≥ 130 mg/dl, or any hemoglobin A1c ≥ 6.5%, respectively. The primary measure was the length of time between the computed diagnosis and the time at which a structured diagnosis could be identified within the EHR history or problem list. RESULTS: We found that 39.8% of those with HTN, 21.6% with HLD, and 5.2% with DM did not receive a corresponding structured diagnosis recorded in the EHR. For those who received a structured diagnosis, a mean of 389, 198, and 166 days elapsed before the patient had the corresponding diagnosis of HTN, HLD, or DM, respectively, recorded in the EHR. CONCLUSIONS: We found a marked temporal delay between when a diagnosis can be computed or inferred and when an equivalent structured diagnosis is recorded within the EHR. These findings demonstrate the continued need for additional study of the EHR to avoid bias when using observational data and reinforce the need for computational approaches to identify clinical phenotypes.


Subject(s)
Diabetes Mellitus , Hypertension , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Electronic Health Records , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Information Storage and Retrieval , Outpatients
2.
Ann Emerg Med ; 76(4): 442-453, 2020 10.
Article in English | MEDLINE | ID: mdl-33012378

ABSTRACT

STUDY OBJECTIVE: The goal of this study is to create a predictive, interpretable model of early hospital respiratory failure among emergency department (ED) patients admitted with coronavirus disease 2019 (COVID-19). METHODS: This was an observational, retrospective, cohort study from a 9-ED health system of admitted adult patients with severe acute respiratory syndrome coronavirus 2 (COVID-19) and an oxygen requirement less than or equal to 6 L/min. We sought to predict respiratory failure within 24 hours of admission as defined by oxygen requirement of greater than 10 L/min by low-flow device, high-flow device, noninvasive or invasive ventilation, or death. Predictive models were compared with the Elixhauser Comorbidity Index, quick Sequential [Sepsis-related] Organ Failure Assessment, and the CURB-65 pneumonia severity score. RESULTS: During the study period, from March 1 to April 27, 2020, 1,792 patients were admitted with COVID-19, 620 (35%) of whom had respiratory failure in the ED. Of the remaining 1,172 admitted patients, 144 (12.3%) met the composite endpoint within the first 24 hours of hospitalization. On the independent test cohort, both a novel bedside scoring system, the quick COVID-19 Severity Index (area under receiver operating characteristic curve mean 0.81 [95% confidence interval {CI} 0.73 to 0.89]), and a machine-learning model, the COVID-19 Severity Index (mean 0.76 [95% CI 0.65 to 0.86]), outperformed the Elixhauser mortality index (mean 0.61 [95% CI 0.51 to 0.70]), CURB-65 (0.50 [95% CI 0.40 to 0.60]), and quick Sequential [Sepsis-related] Organ Failure Assessment (0.59 [95% CI 0.50 to 0.68]). A low quick COVID-19 Severity Index score was associated with a less than 5% risk of respiratory decompensation in the validation cohort. CONCLUSION: A significant proportion of admitted COVID-19 patients progress to respiratory failure within 24 hours of admission. These events are accurately predicted with bedside respiratory examination findings within a simple scoring system.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Emergency Service, Hospital , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Respiratory Insufficiency/virology , Severity of Illness Index , Adolescent , Adult , Aged , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Oxygen Inhalation Therapy , Pandemics , Pneumonia, Viral/therapy , Respiratory Insufficiency/therapy , Retrospective Studies , Risk Assessment/methods , SARS-CoV-2 , Young Adult
3.
Med ; 3(5): 325-334.e4, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35399324

ABSTRACT

Background: The SARS-CoV-2 Omicron variant became a global concern due to its rapid spread and displacement of the dominant Delta variant. We hypothesized that part of Omicron's rapid rise was based on its increased ability to cause infections in persons that are vaccinated compared to Delta. Methods: We analyzed nasal swab PCR tests for samples collected between December 12 and 16, 2021, in Connecticut when the proportion of Delta and Omicron variants was relatively equal. We used the spike gene target failure (SGTF) to classify probable Delta and Omicron infections. We fitted an exponential curve to the estimated infections to determine the doubling times for each variant. We compared the test positivity rates for each variant by vaccination status, number of doses, and vaccine manufacturer. Generalized linear models were used to assess factors associated with odds of infection with each variant among persons testing positive for SARS-CoV-2. Findings: For infections with high virus copies (Ct < 30) among vaccinated persons, we found higher odds that they were infected with Omicron compared to Delta, and that the odds increased with increased number of vaccine doses. Compared to unvaccinated persons, we found significant reduction in Delta positivity rates after two (43.4%-49.1%) and three vaccine doses (81.1%), while we only found a significant reduction in Omicron positivity rates after three doses (62.3%). Conclusion: The rapid rise in Omicron infections was likely driven by Omicron's escape from vaccine-induced immunity. Funding: This work was supported by the Centers for Disease Control and Prevention (CDC).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Hospitalization , Humans , SARS-CoV-2/genetics
4.
medRxiv ; 2021 May 13.
Article in English | MEDLINE | ID: mdl-34013299

ABSTRACT

OBJECTIVE: Real-world data have been critical for rapid-knowledge generation throughout the COVID-19 pandemic. To ensure high-quality results are delivered to guide clinical decision making and the public health response, as well as characterize the response to interventions, it is essential to establish the accuracy of COVID-19 case definitions derived from administrative data to identify infections and hospitalizations. METHODS: Electronic Health Record (EHR) data were obtained from the clinical data warehouse of the Yale New Haven Health System (Yale, primary site) and 3 hospital systems of the Mayo Clinic (validation site). Detailed characteristics on demographics, diagnoses, and laboratory results were obtained for all patients with either a positive SARS-CoV-2 PCR or antigen test or ICD-10 diagnosis of COVID-19 (U07.1) between April 1, 2020 and March 1, 2021. Various computable phenotype definitions were evaluated for their accuracy to identify SARS-CoV-2 infection and COVID-19 hospitalizations. RESULTS: Of the 69,423 individuals with either a diagnosis code or a laboratory diagnosis of a SARS-CoV-2 infection at Yale, 61,023 had a principal or a secondary diagnosis code for COVID-19 and 50,355 had a positive SARS-CoV-2 test. Among those with a positive laboratory test, 38,506 (76.5%) and 3449 (6.8%) had a principal and secondary diagnosis code of COVID-19, respectively, while 8400 (16.7%) had no COVID-19 diagnosis. Moreover, of the 61,023 patients with a COVID-19 diagnosis code, 19,068 (31.2%) did not have a positive laboratory test for SARS-CoV-2 in the EHR. Of the 20 cases randomly sampled from this latter group for manual review, all had a COVID-19 diagnosis code related to asymptomatic testing with negative subsequent test results. The positive predictive value (precision) and sensitivity (recall) of a COVID-19 diagnosis in the medical record for a documented positive SARS-CoV-2 test were 68.8% and 83.3%, respectively. Among 5,109 patients who were hospitalized with a principal diagnosis of COVID-19, 4843 (94.8%) had a positive SARS-CoV-2 test within the 2 weeks preceding hospital admission or during hospitalization. In addition, 789 hospitalizations had a secondary diagnosis of COVID-19, of which 446 (56.5%) had a principal diagnosis consistent with severe clinical manifestation of COVID-19 (e.g., sepsis or respiratory failure). Compared with the cohort that had a principal diagnosis of COVID-19, those with a secondary diagnosis had a more than 2-fold higher in-hospital mortality rate (13.2% vs 28.0%, P<0.001). In the validation sample at Mayo Clinic, diagnosis codes more consistently identified SARS-CoV-2 infection (precision of 95%) but had lower recall (63.5%) with substantial variation across the 3 Mayo Clinic sites. Similar to Yale, diagnosis codes consistently identified COVID-19 hospitalizations at Mayo, with hospitalizations defined by secondary diagnosis code with 2-fold higher in-hospital mortality compared to those with a primary diagnosis of COVID-19. CONCLUSIONS: COVID-19 diagnosis codes misclassified the SARS-CoV-2 infection status of many people, with implications for clinical research and epidemiological surveillance. Moreover, the codes had different performance across two academic health systems and identified groups with different risks of mortality. Real-world data from the EHR can be used to in conjunction with diagnosis codes to improve the identification of people infected with SARS-CoV-2.

5.
PLoS One ; 16(3): e0243291, 2021.
Article in English | MEDLINE | ID: mdl-33788846

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome virus (SARS-CoV-2) has infected millions of people worldwide. Our goal was to identify risk factors associated with admission and disease severity in patients with SARS-CoV-2. DESIGN: This was an observational, retrospective study based on real-world data for 7,995 patients with SARS-CoV-2 from a clinical data repository. SETTING: Yale New Haven Health (YNHH) is a five-hospital academic health system serving a diverse patient population with community and teaching facilities in both urban and suburban areas. POPULATIONS: The study included adult patients who had SARS-CoV-2 testing at YNHH between March 1 and April 30, 2020. MAIN OUTCOME AND PERFORMANCE MEASURES: Primary outcomes were admission and in-hospital mortality for patients with SARS-CoV-2 infection as determined by RT-PCR testing. We also assessed features associated with the need for respiratory support. RESULTS: Of the 28605 patients tested for SARS-CoV-2, 7995 patients (27.9%) had an infection (median age 52.3 years) and 2154 (26.9%) of these had an associated admission (median age 66.2 years). Of admitted patients, 2152 (99.9%) had a discharge disposition at the end of the study period. Of these, 329 (15.3%) required invasive mechanical ventilation and 305 (14.2%) expired. Increased age and male sex were positively associated with admission and in-hospital mortality (median age 80.7 years), while comorbidities had a much weaker association with the risk of admission or mortality. Black race (OR 1.43, 95%CI 1.14-1.78) and Hispanic ethnicity (OR 1.81, 95%CI 1.50-2.18) were identified as risk factors for admission, but, among discharged patients, age-adjusted in-hospital mortality was not significantly different among racial and ethnic groups. CONCLUSIONS: This observational study identified, among people testing positive for SARS-CoV-2 infection, older age and male sex as the most strongly associated risks for admission and in-hospital mortality in patients with SARS-CoV-2 infection. While minority racial and ethnic groups had increased burden of disease and risk of admission, age-adjusted in-hospital mortality for discharged patients was not significantly different among racial and ethnic groups. Ongoing studies will be needed to continue to evaluate these risks, particularly in the setting of evolving treatment guidelines.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , COVID-19/therapy , COVID-19 Testing , Cohort Studies , Female , Hospital Mortality , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Treatment Outcome , Young Adult
6.
J Am Coll Emerg Physicians Open ; 1(4): 569-577, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32838371

ABSTRACT

Background: The SARS-CoV-2 (COVID-19) virus has wide community spread. The aim of this study was to describe patient characteristics and to identify factors associated with COVID-19 among emergency department (ED) patients under investigation for COVID-19 who were admitted to the hospital. Methods: This was a retrospective observational study from 8 EDs within a 9-hospital health system. Patients with COVID-19 testing around the time of hospital admission were included. The primary outcome measure was COVID-19 test result. Patient characteristics were described and a multivariable logistic regression model was used to identify factors associated with a positive COVID-19 test. Results: During the study period from March 1, 2020 to April 8, 2020, 2182 admitted patients had a test resulted for COVID-19. Of these patients, 786 (36%) had a positive test result. For COVID-19-positive patients, 63 (8.1%) died during hospitalization. COVID-19-positive patients had lower pulse oximetry (0.91 [95% confidence interval, CI], [0.88-0.94]), higher temperatures (1.36 [1.26-1.47]), and lower leukocyte counts than negative patients (0.78 [0.75-0.82]). Chronic lung disease (odds ratio [OR] 0.68, [0.52-0.90]) and histories of alcohol (0.64 [0.42-0.99]) or substance abuse (0.39 [0.25-0.62]) were less likely to be associated with a positive COVID-19 result. Conclusion: We observed a high percentage of positive results among an admitted ED cohort under investigation for COVID-19. Patient factors may be useful in early differentiation of patients with COVID-19 from similarly presenting respiratory illnesses although no single factor will serve this purpose.

7.
medRxiv ; 2020 Nov 08.
Article in English | MEDLINE | ID: mdl-32743602

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome virus (SARS-CoV-2) has infected millions of people worldwide. Our goal was to identify risk factors associated with admission and disease severity in patients with SARS-CoV-2. DESIGN: This was an observational, retrospective study based on real-world data for 7,995 patients with SARS-CoV-2 from a clinical data repository. SETTING: Yale New Haven Health (YNHH) is a five-hospital academic health system serving a diverse patient population with community and teaching facilities in both urban and suburban areas. POPULATIONS: The study included adult patients who had SARS-CoV-2 testing at YNHH between March 1 and April 30, 2020. MAIN OUTCOME AND PERFORMANCE MEASURES: Primary outcomes were admission and in-hospital mortality for patients with SARS-CoV-2 infection as determined by RT-PCR testing. We also assessed features associated with the need for respiratory support. RESULTS: Of the 28605 patients tested for SARS-CoV-2, 7995 patients (27.9%) had an infection (median age 52.3 years) and 2154 (26.9%) of these had an associated admission (median age 66.2 years). Of admitted patients, 2152 (99.9%) had a discharge disposition at the end of the study period. Of these, 329 (15.3%) required invasive mechanical ventilation and 305 (14.2%) expired. Increased age and male sex were positively associated with admission and in-hospital mortality (median age 80.7 years), while comorbidities had a much weaker association with the risk of admission or mortality. Black race (OR 1.43, 95%CI 1.14-1.78) and Hispanic ethnicity (OR 1.81, 95%CI 1.50-2.18) were identified as risk factors for admission, but, among discharged patients, age-adjusted in-hospital mortality was not significantly different among racial and ethnic groups. CONCLUSIONS: This observational study identified, among people testing positive for SARSCoV-2 infection, older age and male sex as the most strongly associated risks for admission and in-hospital mortality in patients with SARS-CoV-2 infection. While minority racial and ethnic groups had increased burden of disease and risk of admission, age-adjusted in-hospital mortality for discharged patients was not significantly different among racial and ethnic groups. Ongoing studies will be needed to continue to evaluate these risks, particularly in the setting of evolving treatment guidelines.

SELECTION OF CITATIONS
SEARCH DETAIL