Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
1.
Blood ; 143(21): 2190-2200, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38306657

ABSTRACT

ABSTRACT: VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, caused by somatic mutations in UBA1, is an autoinflammatory disorder with diverse systemic manifestations. Thrombosis is a prominent clinical feature of VEXAS syndrome. The risk factors and frequency of thrombosis in VEXAS syndrome are not well described, due to the disease's recent discovery and the paucity of large databases. We evaluated 119 patients with VEXAS syndrome for venous and arterial thrombosis and correlated their presence with clinical outcomes and survival. Thrombosis occurred in 49% of patients, mostly venous thromboembolism (VTE; 41%). Almost two-thirds of VTEs were unprovoked, 41% were recurrent, and 20% occurred despite anticoagulation. The cumulative incidence of VTE was 17% at 1 year from symptom onset and 40% by 5 years. Cardiac and pulmonary inflammatory manifestations were associated with time to VTE. M41L was positively associated specifically with pulmonary embolism by univariate (odds ratio [OR]: 4.58, confidence interval [CI] 1.28-16.21, P = .02) and multivariate (OR: 16.94, CI 1.99-144.3, P = .01) logistic regression. The cumulative incidence of arterial thrombosis was 6% at 1 year and 11% at 5 years. The overall survival of the entire patient cohort at median follow-up time of 4.8 years was 88%, and there was no difference in survival between patients with or without thrombosis (P = .8). Patients with VEXAS syndrome are at high risk of VTE; thromboprophylaxis should administered be in high-risk settings unless strongly contraindicated.


Subject(s)
Thrombosis , Humans , Male , Female , Adult , Middle Aged , Thrombosis/etiology , Thrombosis/genetics , Thrombosis/epidemiology , Adolescent , Ubiquitin-Activating Enzymes/genetics , Young Adult , Risk Factors , Aged , Child , Venous Thrombosis/etiology , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics , Incidence , Mutation , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/complications , Child, Preschool
2.
Blood ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316766

ABSTRACT

Telomere biology disorders (TBD), caused by pathogenic germline variants in telomere-related genes, present with multi-organ disease and a predisposition to cancer. Clonal hematopoiesis (CH) as a marker of cancer development and survival in TBD is poorly understood. Here, we characterized the clonal landscape of a large cohort of 207 TBD patients with a broad range of age and phenotype. CH occurred predominantly in symptomatic patients and in signature genes typically associated with cancers: PPM1D, POT1, TERT promoter (TERTp), U2AF1S34, and/or TP53. Chromosome 1q gain (Chr1q+) was the commonest karyotypic abnormality. Clinically, multiorgan involvement and CH in TERTp, TP53, and splicing factor genes associated with poorer overall survival. Chr1q+, and splicing factor or TP53 mutations significantly increased the risk of hematologic malignancies, regardless of the clonal burden. Chr1q+ and U2AF1S34 mutated clones were pre-malignant events associated with the secondary acquisition of mutations in genes related to hematologic malignancies. Like known effects of Chr1q+ and TP53-CH, functional studies demonstrated that U2AF1S34 mutations primarily compensated for aberrant upregulation of TP53 and interferon pathways in telomere-dysfunctional hematopoietic stem cells, highlighting the TP53 pathway as a canonical route of malignancy in TBD. In contrast, somatic POT1/PPM1D/TERTp-CH had distinct trajectories unrelated to cancer development. With implications beyond TBD, our data show that telomere dysfunction is a strong selective pressure for CH. In TBD, CH is a poor prognostic marker associated with worse overall survival. The identification of key regulatory pathways that drive clonal transformation in TBD allows the identification of patients at a higher risk of cancer development.

3.
Blood ; 142(14): 1193-1207, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37478398

ABSTRACT

Mechanistic studies of immune bone marrow failure are difficult because of the scarcity of residual cells, the involvement of multiple cell types, and the inherent complexities of hematopoiesis and immunity. Single-cell genomic technologies and bioinformatics allow extensive, multidimensional analysis of a very limited number of cells. We review emerging applications of single-cell techniques, and early results related to disease pathogenesis: effector and target cell populations and relationships, cell-autonomous and nonautonomous phenotypes in clonal hematopoiesis, transcript splicing, chromosomal abnormalities, and T-cell receptor usage and clonality. Dense and complex data from single-cell techniques provide insights into pathophysiology, natural history, and therapeutic drug effects.


Subject(s)
Anemia, Aplastic , Pancytopenia , Humans , Anemia, Aplastic/genetics , Bone Marrow Failure Disorders , Hematopoiesis/genetics , Syndrome , Genomics
4.
Blood ; 141(1): 72-89, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36130301

ABSTRACT

Immune aplastic anemia (AA) is a severe blood disease characterized by T-lymphocyte- mediated stem cell destruction. Hematopoietic stem cell transplantation and immunosuppression are effective, but they entail costs and risks, and are not always successful. The Janus kinase (JAK) 1/2 inhibitor ruxolitinib (RUX) suppresses cytotoxic T-cell activation and inhibits cytokine production in models of graft-versus-host disease. We tested RUX in murine immune AA for potential therapeutic benefit. After infusion of lymph node (LN) cells mismatched at the major histocompatibility complex [C67BL/6 (B6)⇒CByB6F1], RUX, administered as a food additive (Rux-chow), attenuated bone marrow hypoplasia, ameliorated peripheral blood pancytopenia, preserved hematopoietic progenitors, and prevented mortality, when used either prophylactically or therapeutically. RUX suppressed the infiltration, proliferation, and activation of effector T cells in the bone marrow and mitigated Fas-mediated apoptotic destruction of target hematopoietic cells. Similar effects were obtained when Rux-chow was fed to C.B10 mice in a minor histocompatibility antigen mismatched (B6⇒C.B10) AA model. RUX only modestly suppressed lymphoid and erythroid hematopoiesis in normal and irradiated CByB6F1 mice. Our data support clinical trials of JAK/STAT inhibitors in human AA and other immune bone marrow failure syndromes.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Pancytopenia , Mice , Humans , Animals , Pancytopenia/pathology , Anemia, Aplastic/pathology , Bone Marrow Failure Disorders/pathology , Bone Marrow/pathology , Bone Marrow Diseases/pathology , Janus Kinase 1
5.
Blood ; 141(17): 2100-2113, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36542832

ABSTRACT

The choice to postpone treatment while awaiting genetic testing can result in significant delay in definitive therapies in patients with severe pancytopenia. Conversely, the misdiagnosis of inherited bone marrow failure (BMF) can expose patients to ineffectual and expensive therapies, toxic transplant conditioning regimens, and inappropriate use of an affected family member as a stem cell donor. To predict the likelihood of patients having acquired or inherited BMF, we developed a 2-step data-driven machine-learning model using 25 clinical and laboratory variables typically recorded at the initial clinical encounter. For model development, patients were labeled as having acquired or inherited BMF depending on their genomic data. Data sets were unbiasedly clustered, and an ensemble model was trained with cases from the largest cluster of a training cohort (n = 359) and validated with an independent cohort (n = 127). Cluster A, the largest group, was mostly immune or inherited aplastic anemia, whereas cluster B comprised underrepresented BMF phenotypes and was not included in the next step of data modeling because of a small sample size. The ensemble cluster A-specific model was accurate (89%) to predict BMF etiology, correctly predicting inherited and likely immune BMF in 79% and 92% of cases, respectively. Our model represents a practical guide for BMF diagnosis and highlights the importance of clinical and laboratory variables in the initial evaluation, particularly telomere length. Our tool can be potentially used by general hematologists and health care providers not specialized in BMF, and in under-resourced centers, to prioritize patients for genetic testing or for expeditious treatment.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Pancytopenia , Humans , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/genetics , Bone Marrow Diseases/therapy , Diagnosis, Differential , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Anemia, Aplastic/therapy , Bone Marrow Failure Disorders/diagnosis , Pancytopenia/diagnosis
6.
Blood ; 142(3): 244-259, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37084382

ABSTRACT

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is caused by somatic mutations in UBA1 (UBA1mut) and characterized by heterogenous systemic autoinflammation and progressive hematologic manifestations, meeting criteria for myelodysplastic syndrome (MDS) and plasma cell dyscrasias. The landscape of myeloid-related gene mutations leading to typical clonal hematopoiesis (CH) in these patients is unknown. Retrospectively, we screened 80 patients with VEXAS for CH in their peripheral blood (PB) and correlated the findings with clinical outcomes in 77 of them. UBA1mut were most common at hot spot p.M41 (median variant allele frequency [VAF] = 75%). Typical CH mutations cooccurred with UBA1mut in 60% of patients, mostly in DNMT3A and TET2, and were not associated with inflammatory or hematologic manifestations. In prospective single-cell proteogenomic sequencing (scDNA), UBA1mut was the dominant clone, present mostly in branched clonal trajectories. Based on integrated bulk and scDNA analyses, clonality in VEXAS followed 2 major patterns: with either typical CH preceding UBA1mut selection in a clone (pattern 1) or occurring as an UBA1mut subclone or in independent clones (pattern 2). VAF in the PB differed markedly between DNMT3A and TET2 clones (median VAF of 25% vs 1%). DNMT3A and TET2 clones associated with hierarchies representing patterns 1 and 2, respectively. Overall survival for all patients was 60% at 10 years. Transfusion-dependent anemia, moderate thrombocytopenia, and typical CH mutations, each correlated with poor outcome. In VEXAS, UBA1mut cells are the primary cause of systemic inflammation and marrow failure, being a new molecularly defined somatic entity associated with MDS. VEXAS-associated MDS is distinct from classical MDS in its presentation and clinical course.


Subject(s)
Clonal Hematopoiesis , Dermatitis , Humans , Clonal Hematopoiesis/genetics , Prospective Studies , Retrospective Studies , Mutation
7.
Br J Haematol ; 205(3): 1170-1179, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39021060

ABSTRACT

Uncertainty remains regarding the safety and tolerability of immunosuppressive therapy (IST) with anti-thymocyte globulin (ATG) and cyclosporine (CSA) in older patients. We retrospectively analysed two prospective clinical trials of IST in treatment-naïve severe aplastic anaemia (SAA) to assess safety in older compared to younger patients. Patients ≥18 years of age who had received IST with ATG and CSA +/- eltrombopag (EPAG) were included. Pre-treatment baseline characteristics and co-morbidities were assessed as predictors of therapy-related complications in younger (<60 years) versus older (≥60 years) patients. Out of 245 eligible patients, 54 were older and 191 were younger. Older patients had a similar frequency of SAEs, ICU admissions and hospital length of stay compared to younger patients. Older patients had a higher frequency of cardiac events related to IST, but none resulted in death. Older patients had worse long-term overall survival, and more relapse and clonal evolution post-IST. However, older patients who responded to IST had a similar survival at a median follow-up to younger patients. Disease-related factors and limited therapeutic options in refractory disease likely contribute to poorer outcomes in older patients, not complications of upfront IST. Therefore, IST should be considered first-line therapy for most older SAA patients.


Subject(s)
Anemia, Aplastic , Antilymphocyte Serum , Cyclosporine , Hydrazines , Immunosuppressive Agents , Humans , Anemia, Aplastic/drug therapy , Anemia, Aplastic/mortality , Male , Female , Aged , Middle Aged , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Cyclosporine/therapeutic use , Cyclosporine/adverse effects , Antilymphocyte Serum/therapeutic use , Antilymphocyte Serum/adverse effects , Retrospective Studies , Adult , Hydrazines/therapeutic use , Hydrazines/adverse effects , Age Factors , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Benzoates/therapeutic use , Benzoates/adverse effects , Treatment Outcome , Young Adult , Aged, 80 and over , Adolescent
8.
Ann Rheum Dis ; 83(4): 508-517, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38049983

ABSTRACT

OBJECTIVES: Ageing and inflammation are associated with clonal haematopoiesis (CH), the emergence of somatic mutations in haematopoietic cells. This study details CH in patients with systemic vasculitis in association with clinical, haematological and immunological parameters. METHODS: Patients with three forms of vasculitis were screened for CH in peripheral blood by error-corrected sequencing. Relative contributions of age and vasculitis on CH prevalence were calculated using multivariable logistic regression. Clonal hierarchies were assessed by proteogenomic single-cell DNA sequencing, and functional experiments were performed in association with CH status. RESULTS: Patients with Takayasu's arteritis (TAK; n=70; mean age=33.2 years), antineutrophil cytoplasmic antibody-associated vasculitis (AAV; n=47; mean age=55.3 years) and giant cell arteritis (GCA; n=59; mean age=71.2 years) were studied. CH, most commonly in DNMT3A and TET2, was detected in 34% (60/176) of patients versus 18% (28/151) of age-matched controls (p<0.01). Prevalence of CH was independently associated with age (standardised B=0.96, p<0.01) and vasculitis (standardised B=0.46, p<0.01), occurring in 61%, 32% and 13% of patients with GCA, AAV and TAK, respectively. Both branched and linear clonal trajectories showed myeloid-lineage bias, and CH was associated with markers of cellular activation. In GCA, mutations were detected in temporal artery biopsies, and clinical relapse correlated with CH in a dose-dependent relationship with clone size. CONCLUSIONS: Age was more strongly associated with CH prevalence than inflammation in systemic vasculitis. Clonal profile was dominated by DNMT3A mutations which were associated with relapse in GCA. CH is not likely a primary causal factor in systemic vasculitis but may contribute to inflammation.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Giant Cell Arteritis , Takayasu Arteritis , Humans , Adult , Middle Aged , Aged , Giant Cell Arteritis/epidemiology , Takayasu Arteritis/epidemiology , Clonal Hematopoiesis , Inflammation , Recurrence
9.
Blood ; 139(1): 34-43, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34525188

ABSTRACT

Patients with severe aplastic anemia (SAA) are either treated with bone marrow transplant (BMT) or immunosuppression (IST) depending on their age, comorbidities, and available donors. In 2017, our phase 2 trial reported improved hematologic responses with the addition of eltrombopag (EPAG) to standard IST for SAA when compared with a historical cohort treated with IST alone. However, the rates and characteristics of long-term complications, relapse, and clonal evolution, previously described in patients treated with IST alone, are not yet known with this new regimen, IST and EPAG. Patients were accrued from 2012 to 2020, with a total of 178 subjects included in this secondary endpoint analysis. With double the sample size and a much longer median follow-up (4 years) since the original publication in 2017, we report a cumulative relapse rate of 39% in responding patients who received cyclosporine (CSA) maintenance and clonal evolution of 15% in all treated patients at 4 years. Relapse occurred at distinct timepoints: after CSA dose reduction and EPAG discontinuation at 6 months, and after 2 years when CSA was discontinued. Most relapsed patients were retreated with therapeutic doses of CSA +/- EPAG, and two-thirds responded. Clonal evolution to a myeloid malignancy or chromosome 7 abnormality (high-risk) was noted in 5.7% of patients and conferred a poorer overall survival. Neither relapse nor high-risk evolution occurred at a higher rate than was observed in a historical comparator cohort, but the median time to both events was earlier in IST and EPAG treated patients. This trial was registered at www.clinicaltrials.gov as #NCT01623167.


Subject(s)
Anemia, Aplastic/drug therapy , Benzoates/therapeutic use , Cyclosporine/therapeutic use , Hydrazines/therapeutic use , Immunosuppressive Agents/therapeutic use , Pyrazoles/therapeutic use , Adult , Female , Humans , Male , Middle Aged , Prospective Studies , Survival Analysis , Treatment Outcome , Young Adult
10.
Blood ; 140(13): 1496-1506, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35793467

ABSTRACT

Somatic mutations in UBA1 cause vacuoles, E1 ubiquitin-activating enzyme, X-linked, autoinflammatory somatic (VEXAS) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, whereas transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these 3 canonical VEXAS variants produce more UBA1b than any of the 6 other possible single-nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with 2 novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A>T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but coexpression with the second mutation (c.119 G>C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis.


Subject(s)
Nucleotides , Ubiquitin-Activating Enzymes , Codon, Initiator , Humans , Mutation , Ubiquitin-Activating Enzymes/genetics , Ubiquitination
11.
Mol Biol Rep ; 51(1): 754, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874681

ABSTRACT

BACKGROUND: Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS: Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION: These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.


Subject(s)
Leukocytes, Mononuclear , RecQ Helicases , Adult , Female , Humans , Male , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair/genetics , Leukocytes, Mononuclear/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Telomere/metabolism , Telomere/genetics , Telomere Homeostasis/genetics
12.
Blood ; 137(26): 3591-3594, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33971000

ABSTRACT

VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease of adulthood caused by somatic mutations in UBA1 in hematopoietic progenitor cells. Patients develop inflammatory and hematologic symptoms. Myeloid-driven autoinflammation and progressive bone marrow failure lead to substantial morbidity and mortality. Effective medical treatments need to be identified. Reports in the current issue of Blood describe novel UBA1 genetic variants, treatment options, and insight into disease pathophysiology. VEXAS syndrome represents a prototype for a new class of diseases.


Subject(s)
Genes, X-Linked , Genetic Diseases, Inborn , Mutation , Myeloproliferative Disorders , Ubiquitin-Activating Enzymes/genetics , Erythroid Cells/enzymology , Genetic Diseases, Inborn/diagnostic imaging , Genetic Diseases, Inborn/enzymology , Genetic Diseases, Inborn/genetics , Humans , Male , Myeloid Cells/enzymology , Myeloproliferative Disorders/diagnostic imaging , Myeloproliferative Disorders/enzymology , Myeloproliferative Disorders/genetics , Syndrome
13.
Blood ; 138(26): 2799-2809, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34724566

ABSTRACT

Immune aplastic anemia (AA) features somatic loss of HLA class I allele expression on bone marrow cells, consistent with a mechanism of escape from T-cell-mediated destruction of hematopoietic stem and progenitor cells. The clinical significance of HLA abnormalities has not been well characterized. We examined the somatic loss of HLA class I alleles and correlated HLA loss and mutation-associated HLA genotypes with clinical presentation and outcomes after immunosuppressive therapy in 544 AA patients. HLA class I allele loss was detected in 92 (22%) of the 412 patients tested, in whom there were 393 somatic HLA gene mutations and 40 instances of loss of heterozygosity. Most frequently affected was HLA-B*14:02, followed by HLA-A*02:01, HLA-B*40:02, HLA-B*08:01, and HLA-B*07:02. HLA-B*14:02, HLA-B*40:02, and HLA-B*07:02 were also overrepresented in AA. High-risk clonal evolution was correlated with HLA loss, HLA-B*14:02 genotype, and older age, which yielded a valid prediction model. In 2 patients, we traced monosomy 7 clonal evolution from preexisting clones harboring somatic mutations in HLA-A*02:01 and HLA-B*40:02. Loss of HLA-B*40:02 correlated with higher blood counts. HLA-B*07:02 and HLA-B*40:01 genotypes and their loss correlated with late-onset of AA. Our results suggest the presence of specific immune mechanisms of molecular pathogenesis with clinical implications. HLA genotyping and screening for HLA loss may be of value in the management of immune AA. This study was registered at clinicaltrials.gov as NCT00001964, NCT00061360, NCT00195624, NCT00260689, NCT00944749, NCT01193283, and NCT01623167.


Subject(s)
Anemia, Aplastic/genetics , Genes, MHC Class I , HLA-A Antigens/genetics , HLA-B Antigens/genetics , Mutation , Adolescent , Adult , Alleles , Anemia, Aplastic/immunology , Clonal Evolution , Female , Gene Deletion , Gene Expression , HLA-A Antigens/immunology , HLA-B Antigens/immunology , Humans , Immunity , Loss of Heterozygosity , Male , Middle Aged , Young Adult
14.
Haematologica ; 108(12): 3298-3307, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37259612

ABSTRACT

Immunosuppressive treatment (IST) and hematopoietic cell transplant (HCT) are standard therapies for severe aplastic anemia (SAA). We report on conditional survival and standardized mortality ratios (SMR), which compare the mortality risk with the general population adjusted for age, gender, and race/ethnicity, in patients with SAA alive for at least 12 months after treatment with IST or HCT between 2000 and 2018. Given changes to treatment regimens and differences in length of follow-up, two treatment periods were defined a priori: 2000-2010 and 2011-2018. The SMR of patients treated during the period 2000-2010 and who survived one year were 3.50 (95% confidence interval [CI]: 2.62-4.58), 4.12 (95% CI: 3.20-5.21), and 8.62 (95% CI: 6.88-10.67) after IST, matched related donor HCT, and alternative donor HCT, respectively. For the period 2011-2018, the corresponding SMR were 2.89 (95% CI: 1.54-4.94), 3.12 (95% CI: 1.90-4.82), and 4.75 (95% CI: 3.45-6.38), respectively. For IST patients, their mortality risk decreased over time, and became comparable to the general population by five years. For patients who underwent HCT during 2000-2010 and 2011-2018, their mortality risk became comparable to the general population after ten years and after five years, respectively. Thus, 1-year survivors after IST or HCT can expect their longevity beyond five years to be comparable to that of the general US population.


Subject(s)
Anemia, Aplastic , Hematopoietic Stem Cell Transplantation , Humans , Infant , Hematopoietic Stem Cell Transplantation/adverse effects , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Transplantation, Homologous
15.
Haematologica ; 108(5): 1300-1312, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36579443

ABSTRACT

Androgens have been reported to elongate telomeres in retrospective and prospective trials with patients with telomeropathies, mainly with bone marrow failure. In our single-arm prospective clinical trial (clinicaltrials gov. Identifier: NCT02055456), 17 patients with short telomeres and/or germline pathogenic variants in telomere biology genes associated with at least one cytopenia and/or radiologic diagnosis of interstitial lung disease were treated with 5 mg/kg of intramuscular nandrolone decanoate every 15 days for 2 years. Ten of 13 evaluable patients (77%) showed telomere elongation at 12 months by flow-fluorescence in situ hybridization (average increase, 0.87 kb; 95% confidence interval: 0.20-1.55 kb; P=0.01). At 24 months, all ten evaluable patients showed telomere elongation (average increase, 0.49 kb; 95% confidence interval: 0.24-1.23 kb; P=0.18). Hematologic response was achieved in eight of 16 patients (50%) with marrow failure at 12 months, and in ten of 16 patients (63%) at 24 months. Seven patients had interstitial lung disease at baseline, and two and three had pulmonary response at 12 and 24 months, respectively. Two patients died due to pulmonary failure during treatment. In the remaining evaluable patients, the pulmonary function remained stable or improved, but showed consistent decline after cessation of treatment. Somatic mutations in myeloid neoplasm-related genes were present in a minority of patients and were mostly stable during drug treatment. The most common adverse events were elevations in liver function test levels in 88%, acne in 59%, and virilization in 59%. No adverse events grade ≥4 was observed. Our findings indicate that nandrolone decanoate elongates telomeres in patients with telomeropathies, which correlated with clinical improvement in some cases and tolerable adverse events.


Subject(s)
Lung Diseases, Interstitial , Humans , In Situ Hybridization, Fluorescence , Nandrolone Decanoate , Prospective Studies , Retrospective Studies , Telomere
16.
Haematologica ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38058170

ABSTRACT

Patients with severe aplastic anemia (SAA) are at high risk for morbidity and mortality due to severe infections. We aimed to characterize the role of granulocyte transfusion (GT) in SAA. Primary outcomes were survival from first GT, including overall survival (OS) at last follow up, survival to discharge, and receipt of HSCT. Secondary outcomes included evaluation of clinical response at 7 and 30 days after GT initiation based on a clinical scoring system incorporating microbiological and radiographic response. Twenty-eight SAA patients underwent 30 GT courses with a per-dose median of 1.28 x 109 granulocyte cells/kilogram (range 0.45-4.52 x 109). OS from initial GT to median last follow up (551 days) was 50%, with 39% (11/28) alive at last follow up. Sixty-four percent (18/28) of all patients survived to hospital discharge. Patients with complete, partial, or stable response at 30 days had significantly improved OS compared to non-responders (p=0.0004). Eighty-six percent (18/21) of patients awaiting HSCT during GT underwent transplant and 62% (13/21) survived to post-HSCT discharge. Sex, type of infection, or percentage of days with absolute neutrophil count > 0.2x109/L during GT course were not predictive of survival (p=0.52, p=0.7, p=0.28). Nine of 28 (32%) patients developed new or increased human leukocyte antigen (HLA) alloimmunization during their GT course. GTs in SAA may impact survival in those with improvement or stabilization of their underlying infection. Alloimmunization can occur and OS in this population remains poor, but GTs may be a useful tool to bridge patients to curative treatment with HSCT.

17.
Am J Hematol ; 98(6): 932-939, 2023 06.
Article in English | MEDLINE | ID: mdl-37021397

ABSTRACT

Immune severe aplastic anemia (SAA) is characterized by pancytopenia and immune-mediated bone marrow destruction. SAA may be treated with hematopoietic stem cell transplantation (HSCT) or immunosuppressive therapy (IST). However, 30% of patients treated with IST relapse. We previously reported a clinical trial of alemtuzumab in which more than half of 25 relapsed SAA patients (56%) responded hematologically. Here, we present long-term results of a total of 42 patients. Participants with SAA who had previously completed antithymocyte globulin (ATG)-based IST, but had relapsed, were enrolled on this study. Alemtuzumab was administered intravenously (IV) (n = 28) or subcutaneously (SC) (n = 14). The primary endpoint was hematologic response at 6 months. Secondary endpoints included relapse, clonal evolution, and survival. This trial was registered at clinicaltrials.gov (NCT00195624). Patients were enrolled over 9 years, with median follow-up of 6 years. Median age was 32 years, with 57% being female. At 6 months, 18 patients (43%) achieved response; 15 (54%) of those who received IV compared with 3 (21%) who received SC therapy. Six patients (14%) had durable long-term response without need for subsequent AA-directed therapy or HSCT at last follow-up. Nine patients had clonal evolution, with high-risk evolution occurring in 6. Overall survival was 67% at median follow-up of 6 years. Prolonged iatrogenic immunosuppression was observed as long as 2 years after alemtuzumab administration. Alemtuzumab induces responses in relapsed SAA, some of which are durable long-term. However, immunosuppression can persist for years, requiring long-term monitoring.


Subject(s)
Anemia, Aplastic , Immunosuppressive Agents , Humans , Female , Adult , Male , Immunosuppressive Agents/adverse effects , Cyclosporine/therapeutic use , Alemtuzumab/therapeutic use , Anemia, Aplastic/drug therapy , Treatment Outcome , Antilymphocyte Serum/therapeutic use , Recurrence
18.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834110

ABSTRACT

We previously reported that granulocytic myeloid-derived suppressor cells (G-MDSCs) suppressed T-cell activation and attenuated bone marrow failure (BMF) in a minor histocompatibility (minor-H) antigen mismatched murine aplastic anemia (AA) model. In the current study, we tested the hypothesis that exosomes, a subset of extracellular vesicles, are responsible at least partially for G-MDSCs' therapeutic efficacy. Indeed, exosomes isolated from GMDSCs (G-MDSC-exos) suppressed CD4+ and CD8+ T-cell proliferation in vitro and mildly attenuated immune BMF in the minor-H mismatched AA model. G-MDSC-exos treatment significantly increased red blood cells, hemoglobin, and total bone marrow (BM) cells, and moderately reduced BM CD8+ T cells. G-MDSC-exos' effects were associated with upregulations in an array of lymphocyte-suppression-related miRNAs such as hsa-miR-142-5p, miR-19a-3p, and miR-19b-3p in both BM CD4+ and CD8+ T cells. We concluded that G-MDSC-exos attenuate immune BMF via modulating the delivery of immunosuppressive miRNAs into activated T lymphocytes.


Subject(s)
Exosomes , MicroRNAs , Myeloid-Derived Suppressor Cells , Pancytopenia , Mice , Animals , CD8-Positive T-Lymphocytes , Disease Models, Animal , Granulocytes , Immunosuppressive Agents/pharmacology , MicroRNAs/genetics , Bone Marrow Failure Disorders
19.
BMC Bioinformatics ; 23(Suppl 3): 98, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35313800

ABSTRACT

BACKGROUND: Although both copy number variations (CNVs) and single nucleotide variations (SNVs) detected by single-cell RNA sequencing (scRNA-seq) are used to study intratumor heterogeneity and detect clonal groups, a software that integrates these two types of data in the same cells is unavailable. RESULTS: We developed Clonal Architecture with Integration of SNV and CNV (CAISC), an R package for scRNA-seq data analysis that clusters single cells into distinct subclones by integrating CNV and SNV genotype matrices using an entropy weighted approach. The performance of CAISC was tested on simulation data and four real datasets, which confirmed its high accuracy in sub-clonal identification and assignment, including subclones which cannot be identified using one type of data alone. Furthermore, integration of SNV and CNV allowed for accurate examination of expression changes between subclones, as demonstrated by the results from trisomy 8 clones of the myelodysplastic syndromes (MDS) dataset. CONCLUSIONS: CAISC is a powerful tool for integration of CNV and SNV data from scRNA-seq to identify clonal clusters with better accuracy than obtained from a single type of data. CAISC allows users to interactively examine clonal assignments.


Subject(s)
DNA Copy Number Variations , Nucleotides , Genetic Heterogeneity , Mutation , Sequence Analysis, RNA/methods , Software
20.
Br J Haematol ; 199(5): 679-687, 2022 12.
Article in English | MEDLINE | ID: mdl-36128909

ABSTRACT

Patients with severe aplastic anaemia (SAA) are often not vaccinated against viruses due to concerns of ineffective protective antibody response and potential for pathogenic global immune system activation, leading to relapse. We evaluated the impact of COVID-19 vaccination on haematological indices and disease status and characterized the humoural and cellular responses to vaccination in 50 SAA patients, who were previously treated with immunosuppressive therapy (IST). There was no significant difference in haemoglobin (p = 0.52), platelet count (p = 0.67), absolute lymphocyte (p = 0.42) and neutrophil (p = 0.98) counts prior to and after completion of vaccination series. Relapse after vaccination, defined as a progressive decline in counts requiring treatment, occurred in three patients (6%). Humoural response was detectable in 90% (28/31) of cases by reduction in an in-vitro Angiotensin II Converting Enzyme (ACE2) binding and neutralization assay, even in patients receiving ciclosporin (10/11, 90.1%). Comparison of spike-specific T-cell responses in 27 SAA patients and 10 control subjects revealed qualitatively similar CD4+ Th1-dominant responses to vaccination. There was no difference in CD4+ (p = 0.77) or CD8+ (p = 0.74) T-cell responses between patients on or off ciclosporin therapy at the time of vaccination. Our data highlight appropriate humoural and cellular responses in SAA previously treated with IST and true relapse after vaccination is rare.


Subject(s)
Anemia, Aplastic , COVID-19 , Humans , Anemia, Aplastic/drug therapy , Cyclosporine/therapeutic use , COVID-19 Vaccines/therapeutic use , SARS-CoV-2 , Immunosuppressive Agents/therapeutic use , COVID-19/prevention & control , Recurrence , Immunity , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL