Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.662
Filter
1.
Nat Immunol ; 24(2): 239-254, 2023 02.
Article in English | MEDLINE | ID: mdl-36604547

ABSTRACT

Metastasis is the leading cause of cancer-related deaths and myeloid cells are critical in the metastatic microenvironment. Here, we explore the implications of reprogramming pre-metastatic niche myeloid cells by inducing trained immunity with whole beta-glucan particle (WGP). WGP-trained macrophages had increased responsiveness not only to lipopolysaccharide but also to tumor-derived factors. WGP in vivo treatment led to a trained immunity phenotype in lung interstitial macrophages, resulting in inhibition of tumor metastasis and survival prolongation in multiple mouse models of metastasis. WGP-induced trained immunity is mediated by the metabolite sphingosine-1-phosphate. Adoptive transfer of WGP-trained bone marrow-derived macrophages reduced tumor lung metastasis. Blockade of sphingosine-1-phosphate synthesis and mitochondrial fission abrogated WGP-induced trained immunity and its inhibition of lung metastases. WGP also induced trained immunity in human monocytes, resulting in antitumor activity. Our study identifies the metabolic sphingolipid-mitochondrial fission pathway for WGP-induced trained immunity and control over metastasis.


Subject(s)
Lung Neoplasms , beta-Glucans , Animals , Mice , Humans , Trained Immunity , Macrophages , Lysophospholipids/metabolism , Monocytes , Lung Neoplasms/pathology , beta-Glucans/metabolism , beta-Glucans/pharmacology , Tumor Microenvironment
2.
Cell ; 168(1-2): 200-209.e12, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086091

ABSTRACT

Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PAPERCLIP.


Subject(s)
Bacillus subtilis/physiology , Biofilms , Electrophysiological Phenomena , Pseudomonas aeruginosa/physiology , Biofilms/classification , Membrane Potentials , Microfluidic Analytical Techniques , Models, Biological , Potassium/metabolism
3.
Nature ; 629(8014): 1118-1125, 2024 May.
Article in English | MEDLINE | ID: mdl-38778102

ABSTRACT

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Subject(s)
Arabidopsis , Calcium Signaling , Calcium , Germination , Osmolar Concentration , Pollen , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Germination/genetics , Mutation , Pollen/genetics , Pollen/metabolism , Water/metabolism , HEK293 Cells , Humans , Dehydration
4.
Nature ; 578(7796): 577-581, 2020 02.
Article in English | MEDLINE | ID: mdl-32076270

ABSTRACT

Hydrogen peroxide (H2O2) is a major reactive oxygen species in unicellular and multicellular organisms, and is produced extracellularly in response to external stresses and internal cues1-4. H2O2 enters cells through aquaporin membrane proteins and covalently modifies cytoplasmic proteins to regulate signalling and cellular processes. However, whether sensors for H2O2 also exist on the cell surface remains unknown. In plant cells, H2O2 triggers an influx of Ca2+ ions, which is thought to be involved in H2O2 sensing and signalling. Here, by using forward genetic screens based on Ca2+ imaging, we isolated hydrogen-peroxide-induced Ca2+ increases (hpca) mutants in Arabidopsis, and identified HPCA1 as a leucine-rich-repeat receptor kinase belonging to a previously uncharacterized subfamily that features two extra pairs of cysteine residues in the extracellular domain. HPCA1 is localized to the plasma membrane and is activated by H2O2 via covalent modification of extracellular cysteine residues, which leads to autophosphorylation of HPCA1. HPCA1 mediates H2O2-induced activation of Ca2+ channels in guard cells and is required for stomatal closure. Our findings help to identify how the perception of extracellular H2O2 is integrated with responses to various external stresses and internal cues in plants, and have implications for the design of crops with enhanced fitness.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Hydrogen Peroxide/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Cysteine/chemistry , Cysteine/metabolism , Enzyme Activation , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation , Oxidation-Reduction , Plant Cells/metabolism , Protein Domains , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics
5.
Plant J ; 117(2): 498-515, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37856574

ABSTRACT

Salt glands are the unique epidermal structures present in recretohalophytes, plants that actively excrete excess Na+ by salt secretory structures to avoid salt damage. Here, we describe a transmembrane protein that localizes to the plasma membrane of the recretohalophyte Limonium bicolor. As virus-induced gene silencing of the corresponding gene LbRSG in L. bicolor decreased the number of salt glands, we named the gene Reduced Salt Gland. We detected LbRSG transcripts in salt glands by in situ hybridization and transient transformation. Overexpression and silencing of LbRSG in L. bicolor pointed to a positive role in salt gland development and salt secretion by interacting with Lb3G16832. Heterologous LbRSG expression in Arabidopsis enhanced salt tolerance during germination and the seedling stage by alleviating NaCl-induced ion stress and osmotic stress after replacing or deleting the (highly) negatively charged region of extramembranous loop. After screened by immunoprecipitation-mass spectrometry and verified using yeast two-hybrid, PGK1 and BGLU18 were proposed to interact with LbRSG to strengthen salt tolerance. Therefore, we identified (highly) negatively charged regions in the extramembrane loop that may play an essential role in salt tolerance, offering hints about LbRSG function and its potential to confer salt resistance.


Subject(s)
Plumbaginaceae , Salt Tolerance , Animals , Salt Tolerance/genetics , Plumbaginaceae/genetics , Plumbaginaceae/metabolism , Salt Gland , Seedlings/genetics , Germination , Gene Expression Regulation, Plant , Plants, Genetically Modified
6.
Plant Physiol ; 195(3): 2094-2110, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38588029

ABSTRACT

Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into 4 broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of Single-cell RNA sequencing with exogenous application of 6-benzylaminopurine, we delineated 5 salt gland development-associated subclusters and defined salt gland-specific differentiation trajectories from Subclusters 8, 4, and 6 to Subcluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling-related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Plumbaginaceae , Cytokinins/metabolism , Cytokinins/pharmacology , Plumbaginaceae/genetics , Plumbaginaceae/growth & development , Plumbaginaceae/metabolism , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
7.
Nature ; 572(7769): 341-346, 2019 08.
Article in English | MEDLINE | ID: mdl-31367039

ABSTRACT

Salinity is detrimental to plant growth, crop production and food security worldwide. Excess salt triggers increases in cytosolic Ca2+ concentration, which activate Ca2+-binding proteins and upregulate the Na+/H+ antiporter in order to remove Na+. Salt-induced increases in Ca2+ have long been thought to be involved in the detection of salt stress, but the molecular components of the sensing machinery remain unknown. Here, using Ca2+-imaging-based forward genetic screens, we isolated the Arabidopsis thaliana mutant monocation-induced [Ca2+]i increases 1 (moca1), and identified MOCA1 as a glucuronosyltransferase for glycosyl inositol phosphorylceramide (GIPC) sphingolipids in the plasma membrane. MOCA1 is required for salt-induced depolarization of the cell-surface potential, Ca2+ spikes and waves, Na+/H+ antiporter activation, and regulation of growth. Na+ binds to GIPCs to gate Ca2+ influx channels. This salt-sensing mechanism might imply that plasma-membrane lipids are involved in adaption to various environmental salt levels, and could be used to improve salt resistance in crops.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Calcium Signaling , Calcium/metabolism , Glycosphingolipids/metabolism , Plant Cells/metabolism , Sodium Chloride/metabolism , Arabidopsis/genetics , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Membrane Potentials/drug effects , Mutation , Salt Stress/genetics , Salt Stress/physiology , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/metabolism
8.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35385357

ABSTRACT

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Transcriptome , Child , Humans , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
9.
Anal Chem ; 96(14): 5375-5383, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38523323

ABSTRACT

Lipids play a significant role in life activities and participate in the biological system through different pathways. Although comprehensive two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) has been developed to profile lipid abundance changes, lipid identification and quantification from 2DLC-MS data remain a challenge. We created Lipid Wizard, open-source software for lipid assignment and isotopic peak stripping of the 2DLC-MS data. Lipid Wizard takes the peak list deconvoluted from the 2DLC-MS data as input and assigns each isotopic peak to the lipids recorded in the LIPID MAPS database by precursor ion m/z matching. The matched lipids are then filtered by the first-dimension retention time (1D RT), followed by the second-dimension retention time (2D RT), where the 2D RT of each lipid is predicted using an equivalent carbon number (ECN) model. The remaining assigned lipids are used for isotopic peak stripping via an iterative linear regression. The performance of Lipid Wizard was tested using a set of lipid standards and then applied to study the lipid changes in the livers of mice (fat-1) fed with alcohol.


Subject(s)
Lipids , Liquid Chromatography-Mass Spectrometry , Mice , Animals , Lipids/analysis , Software , Liver/chemistry , Databases, Factual
10.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632579

ABSTRACT

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Subject(s)
Hypertension , Microbiota , Humans , Rats , Animals , Rats, Inbred SHR , Neuroinflammatory Diseases , Hypertension/metabolism , Blood Pressure , Medulla Oblongata/metabolism , Acetates/pharmacology
11.
Opt Express ; 32(11): 20119-20127, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859128

ABSTRACT

Generating multiple beams in distinct polarization states is promising in multi-mode wireless communication but still remains challenging in metasurface design. Here, we theoretically and experimentally demonstrate a concept of broadband receiving-transmitting metasurface and its application to the generation of multi-polarization multi-beam. By employing U-slot patch, an efficient receiving-transmitting element with full phase coverage is designed within a wide bandwidth. Based on this architecture, a methodology is proposed to generate dual spin-decoupled beams and then developed into the strategy of generating multiple beams at different linear polarizations. To verify our strategy, two lens antennas, respectively radiating dual-spin dual-beam and quad-polarization quad-beam, are devised. With multi-polarization multi-beam radiated, the two lens antennas are both with whole aperture efficiency above 40% within the bandwidth of 10.6-12.3 GHz (14.8%), firmly validating our strategy and design.

12.
Cardiovasc Diabetol ; 23(1): 41, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38254086

ABSTRACT

BACKGROUND: It is well-known that systemic inflammation plays a crucial role in the pathogenesis and prognosis of acute myocardial infarction (AMI). The systemic immune-inflammation index (SII, platelet × neutrophil/lymphocyte ratio) is a novel index that is used for the characterization of the severity of systemic inflammation. Recent studies have identified the high SII level as an independent predictor of poor outcomes in patients with AMI. We aimed to investigate the prognostic implications of SII in AMI patients with and without diabetes mellitus (DM). METHODS: We included 2111 patients with AMI from February 2014 to March 2018. Multivariable Cox regression analyses were performed to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) of all-cause death and cardiovascular (CV) death. Multiple imputation was used for missing covariates. RESULTS: Of 2111 patients (mean age: 65.2 ± 12.2 years, 77.5% were males) analyzed, 789 (37.4%) had DM. Generalized additive model analyses showed that as the SII increased, the C-reactive protein and peak TnT elevated while the LVEF declined, and these associations were similar in patients with and without DM. During a median of 2.5 years of follow-up, 210 all-cause deaths and 154 CV deaths occurred. When treating the SII as a continuous variable, a higher log-transformed SII was significantly associated with increased all-cause mortality (HR: 1.57, 95%CI: 1.02-2.43) and CV mortality (HR: 1.85, 95%CI 1.12-3.05), and such an association was also significant in the diabetics (HRs and 95%CIs for all-cause death and CV death were 2.90 [1.40-6.01] and 3.28 [1.43-7.57], respectively) while not significant in the nondiabetics (Pinteraction for all-cause death and CV death were 0.019 and 0.049, respectively). Additionally, compared to patients with the lowest tertiles of SII, those with the highest tertiles of SII possessed significantly higher all-cause mortality (HR: 1.82, 95%CI 1.19-2.79) and CV mortality (HR: 1.82, 95%CI 1.19-2.79) after multivariable adjustment, and this relationship remained pronounced in the diabetics (HRs and 95%CIs for all-cause death and CV death were 2.00 [1.13-3.55] and 2.09 [1.10-3.98], respectively) but was not observed in the nondiabetics (HRs and 95%CIs for all-cause death and CV death were 1.21 [0.75-1.97] and 1.60 [0.89-2.90], respectively). Our restricted cubic splines analyses indicated a pronounced linear association between SII and mortality only in diabetics. CONCLUSIONS: In AMI patients with DM, high SII is an independent predictor of poor survival and may be helpful for patient's risk stratification.


Subject(s)
Diabetes Mellitus , Myocardial Infarction , Male , Humans , Middle Aged , Aged , Female , Prognosis , Myocardial Infarction/diagnosis , Inflammation/diagnosis , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Registries
13.
J Exp Bot ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795330

ABSTRACT

Limonium bicolor, known horticulturally as sea lavender, is a typical recretohalophyte with salt glands in its leaf epidermis that secrete excess Na+ out of the plant. Although many genes have been proposed to contribute to salt gland initiation and development, a detailed analysis of alternative splicing, alternative polyadenylation patterns, and long non-coding RNAs (lncRNAs) has been lacking. Here, we applied single-molecule long-read mRNA isoform sequencing (Iso-seq) to explore the complexity of the L. bicolor transcriptome in leaves during salt gland initiation (stage A) and salt gland differentiation (stage B) based on the reference genome. We identified alternative splicing events and the use of alternative poly(A) sites unique to stage A or stage B, leading to the hypothesis that they might contribute to the differentiation of salt glands. Based on the Iso-seq data and RNA in situ hybridization of candidate genes, we selected the lncRNA Btranscript_153392 for gene editing and virus-induced gene silencing to dissect its function. In the absence of this transcript, we observed fewer salt glands on the leaf epidermis, leading to diminished salt secretion and salt tolerance. Our data provide abundant transcriptome resources for unraveling the mechanisms behind salt gland development and furthering crop transformation efforts towards enhanced survivability in saline soils.

14.
Eur J Neurol ; 31(4): e16208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38270448

ABSTRACT

BACKGROUND AND PURPOSE: Depth electroencephalography (dEEG) is an emerging neuromonitoring technology in acute brain injury (ABI). We aimed to explore the concordances between electrophysiological activities on dEEG and on scalp EEG (scEEG) in ABI patients. METHODS: Consecutive ABI patients who received dEEG monitoring between 2018 and 2022 were included. Background, sporadic epileptiform discharges, rhythmic and periodic patterns (RPPs), electrographic seizures, brief potentially ictal rhythmic discharges, ictal-interictal continuum (IIC) patterns, and hourly RPP burden on dEEG and scEEG were compared. RESULTS: Sixty-one ABI patients with a median dEEG monitoring duration of 114 h were included. dEEG significantly showed less continuous background (75% vs. 90%, p = 0.03), higher background amplitude (p < 0.001), more frequent rhythmic spike-and-waves (16% vs. 3%, p = 0.03), more IIC patterns (39% vs. 21%, p = 0.03), and greater hourly RPP burden (2430 vs. 1090 s/h, p = 0.01), when compared to scEEG. Among five patients with seizures on scEEG, one patient had concomitant seizures on dEEG, one had periodic discharges (not concomitant) on dEEG, and three had no RPPs on dEEG. Features and temporal occurrence of electrophysiological activities observed on dEEG and scEEG are not strongly associated. Patients with seizures and IIC patterns on dEEG seemed to have a higher rate of poor outcomes at discharge than patients without these patterns on dEEG (42% vs. 25%, p = 0.37). CONCLUSIONS: dEEG can detect abnormal electrophysiological activities that may not be seen on scEEG and can be used as a complement in the neuromonitoring of ABI patients.


Subject(s)
Brain Injuries , Scalp , Humans , Prognosis , Electroencephalography , Seizures
15.
Int J Legal Med ; 138(3): 1205-1219, 2024 May.
Article in English | MEDLINE | ID: mdl-37853302

ABSTRACT

Blood-containing mixtures often appear in murder and robbery cases, and their identification plays a significant role in solving crimes. In recent years, the co-detection of DNA methylation markers (CpG) and single nucleotide polymorphism (SNP) markers has been shown to be a promising tool for the identification of semen and its donor. However, similar research on blood stains that are frequently found at crime scenes has not yet been reported. In this study, we employed blood-specific CpG-linked SNP markers (CpG-SNP) for blood-specific genotyping and the linking of blood and its donor. The tissue-specific CpG markers were screened from the literature and further verified by combining bisulfite conversion with amplification-refractory mutation system (ARMS) technology. Meanwhile, adjacent SNP markers with a minor allele frequency (MAF) greater than 0.1 were selected within 400 bp upstream and downstream of the CpG markers. SNP genotyping was performed using SNaPshot technology on a capillary electrophoresis (CE) platform. Finally, a multiplex panel, including 19 blood-specific CpG linked to 23 SNP markers, as well as 1 semen-specific CpG, 1 vaginal secretion-specific CpG, and 1 saliva-specific CpG marker, was constructed successfully. The panel showed good tissue specificity and blood stains stored at room temperature for up to nine months and moderately degraded (4 < DI < 10) could be effectively identified. Moreover, it could also be detected when blood content in the mixed stains was as low as 1%. In addition, 15 ng of DNA used for bisulfite conversion was required for obtaining a complete profile. The cumulative discrimination power of the panel among the Han population of northern China could reach 0.999983. This is the first investigation conducted for the simultaneous identification of blood and its donor regardless of other body fluids included in mixed stains. The successful construction of the panel will play a vital role in the comprehensive analysis of blood-containing mixtures in forensic practice.


Subject(s)
Body Fluids , Polymorphism, Single Nucleotide , Female , Humans , Sulfites , Saliva , DNA Methylation , Genetic Markers , Forensic Genetics/methods
16.
Inorg Chem ; 63(26): 12342-12349, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38904258

ABSTRACT

As a typical RNA virus, the genetic information on HIV-1 is entirely stored in RNA. The reverse transcription activity of HIV-1 reverse transcriptase (RT) plays a crucial role in the replication and transmission of the virus. Non-nucleoside RT inhibitors (NNRTIs) block the function of RT by binding to the RNA binding site on RT, with very few targeting viral RNA. In this study, by transforming planar conjugated ligands into a spiro structure, we convert classical Ru(II) DNA intercalators into a nonintercalator. This enables selective binding to HIV-1 transactivation response (TAR) RNA on the outer side of nucleic acids through dual interactions involving hydrogen bonds and electrostatic attraction, effectively inhibiting HIV-1 RT and serving as a selective fluorescence probe for TAR RNA.


Subject(s)
HIV Reverse Transcriptase , HIV-1 , Reverse Transcriptase Inhibitors , Ruthenium , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/metabolism , Ligands , HIV-1/enzymology , HIV-1/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , RNA, Viral/metabolism , RNA, Viral/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Molecular Structure , Humans , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , HIV Long Terminal Repeat , Binding Sites
17.
Org Biomol Chem ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973505

ABSTRACT

Substituted tetrahydrofuran derivatives were designed and synthesized to serve as the P2 ligand for a series of potent HIV-1 protease inhibitors. Both enantiomers of the tetrahydrofuran derivatives were synthesized stereoselectivity in optically active forms using lipase-PS catalyzed enzymatic resolution as the key step. These tetrahydrofuran derivatives are designed to promote hydrogen bonding and van der Waals interactions with the backbone atoms in the S2 subsite of the HIV-1 protease active site. Several inhibitors displayed very potent HIV-1 protease inhibitory activity. A high-resolution X-ray crystal structure of an inhibitor-bound HIV-1 protease provided important insight into the ligand binding site interactions in the active site.

18.
Cell Biol Toxicol ; 40(1): 16, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38472656

ABSTRACT

Intervertebral disc degeneration (IVDD) is an aging disease that results in a low quality of life and heavy socioeconomic burden. The mitochondrial unfolded protein response (UPRmt) take part in various aging-related diseases. Our research intents to explore the role and underlying mechanism of UPRmt in IVDD. Nucleus pulposus (NP) cells were exposed to IL-1ß and nicotinamide riboside (NR) served as UPRmt inducer to treat NP cells. Detection of ATP, NAD + and NADH were used to determine the function of mitochondria. MRI, Safranin O-fast green and Immunohistochemical examination were used to determine the degree of IVDD in vivo. In this study, we discovered that UPRmt was increased markedly in the NP cells of human IVDD tissues than in healthy controls. In vitro, UPRmt and mitophagy levels were promoted in NP cells treated with IL-1ß. Upregulation of UPRmt by NR and Atf5 overexpression inhibited NP cell apoptosis and further improved mitophagy. Silencing of Pink1 reversed the protective effects of NR and inhibited mitophagy induced by the UPRmt. In vivo, NR might attenuate the degree of IDD by activating the UPRmt in rats. In summary, the UPRmt was involved in IVDD by regulating Pink1-induced mitophagy. Mitophagy induced by the UPRmt might be a latent treated target for IVDD.


Subject(s)
Intervertebral Disc Degeneration , Mitophagy , Animals , Humans , Rats , Activating Transcription Factors/metabolism , Activating Transcription Factors/pharmacology , Apoptosis , Cyclic AMP Response Element-Binding Protein/metabolism , Intervertebral Disc Degeneration/metabolism , Mitochondria/metabolism , Protein Kinases/metabolism , Quality of Life , Rats, Sprague-Dawley
19.
Environ Sci Technol ; 58(17): 7279-7290, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38629869

ABSTRACT

Exposure to hexavalent chromium damages genetic materials like DNA and chromosomes, further elevating cancer risk, yet research rarely focuses on related immunological mechanisms, which play an important role in the occurrence and development of cancer. We investigated the association between blood chromium (Cr) levels and genetic damage biomarkers as well as the immune regulatory mechanism involved, such as costimulatory molecules, in 120 workers exposed to chromates. Higher blood Cr levels were linearly correlated with higher genetic damage, reflected by urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and blood micronucleus frequency (MNF). Exploratory factor analysis revealed that both positive and negative immune regulation patterns were positively associated with blood Cr. Specifically, higher levels of programmed cell death protein 1 (PD-1; mediated proportion: 4.12%), programmed cell death ligand 1 (PD-L1; 5.22%), lymphocyte activation gene 3 (LAG-3; 2.11%), and their constitutive positive immune regulation pattern (5.86%) indirectly positively influenced the relationship between blood Cr and urinary 8-OHdG. NOD-like receptor family pyrin domain containing 3 (NLRP3) positively affected the association between blood Cr levels and inflammatory immunity. This study, using machine learning, investigated immune regulation and its potential role in chromate-induced genetic damage, providing insights into complex relationships and emphasizing the need for further research.


Subject(s)
Chromates , Machine Learning , Humans , Cross-Sectional Studies , Environmental Pollutants , Male , DNA Damage , Adult , Female , Middle Aged , Biomarkers
20.
Neurol Sci ; 45(6): 2719-2728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150131

ABSTRACT

OBJECTIVES: Patients with severe stroke are at high risk of developing acute respiratory distress syndrome (ARDS), but this severe complication was often under-diagnosed and rarely explored in stroke patients. We aimed to investigate the prevalence, early predictors, and outcomes of ARDS in severe stroke. METHODS: This prospective study included consecutive patients admitted to neurological intensive care unit (neuro-ICU) with severe stroke, including acute ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. The incidence of ARDS was examined, and baseline characteristics and severity scores on admission were investigated as potential early predictors for ARDS. The in-hospital mortality, length of neuro-ICU stay, the total cost in neuro-ICU, and neurological functions at 90 days were explored. RESULTS: Of 140 patients included, 35 (25.0%) developed ARDS. Over 90% of ARDS cases occurred within 1 week of admission. Procalcitonin (OR 1.310 95% CI 1.005-1.707, P = 0.046) and PaO2/FiO2 on admission (OR 0.986, 95% CI 0.979-0.993, P < 0.001) were independently associated with ARDS, and high brain natriuretic peptide (OR 0.994, 95% CI 0.989-0.998, P = 0.003) was a red flag biomarker warning that the respiratory symptoms may be caused by cardiac failure rather than ARDS. ARDS patients had longer stays and higher expenses in neuro-ICU. Among patients with ARDS, 25 (62.5%) were moderate or severe ARDS. All the patients with moderate to severe ARDS had an unfavorable outcome at 90 days. CONCLUSIONS: ARDS is common in patients with severe stroke, with most cases occurring in the first week of admission. Procalcitonin and PaO2/FiO2 on admission are early predictors of ARDS. ARDS worsens both short-term and long-term outcomes. The conflict in respiratory support strategies between ARDS and severe stroke needs to be further studied.


Subject(s)
Respiratory Distress Syndrome , Stroke , Humans , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/complications , Male , Female , Aged , Prospective Studies , Prevalence , Middle Aged , Stroke/epidemiology , Stroke/complications , Intensive Care Units/statistics & numerical data , Severity of Illness Index , Hospital Mortality , Aged, 80 and over , Length of Stay/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL