Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Molecules ; 27(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684487

ABSTRACT

The core of Cyclolinopeptide A (CLA, cyclo(LIILVPPFF)), responsible for its high immunosuppressive activity, contains a Pro-Pro-Phe-Phe sequence. A newly synthesized cyclic tetrapeptide, cyclo(Pro-Pro-ß3-HoPhe-Phe) (denoted as 4B8M) bearing the active sequence of CLA, was recently shown to exhibit a wide array of anti-inflammatory properties in mouse models. In this investigation, we demonstrate that the peptide significantly inhibits the replication of human adenovirus C serotype 5 (HAdV-5) and Herpes simplex virus type-1 (HSV-1) in epithelial lung cell line A-549, applying Cidofovir and Acyclovir as reference drugs. Based on a previously established mechanism of its action, we propose that the peptide may inhibit virus replication by the induction of PGE2 acting via EP2/EP4 receptors in epithelial cells. In summary, we reveal a new, antiviral property of this anti-inflammatory peptide.


Subject(s)
Herpesvirus 1, Human , Animals , Antiviral Agents/pharmacology , Dipeptides , Immunosuppressive Agents/pharmacology , Mice , Peptides , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology
2.
Molecules ; 26(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071640

ABSTRACT

A facile solid-phase synthetic method for incorporating the imidazoline ring motif, a surrogate for a trans peptide bond, into bioactive peptides is reported. The example described is the synthesis of an imidazoline peptidomimetic analog of an insect pyrokinin neuropeptide via a cyclization reaction of an iminium salt generated from the preceding amino acid and 2,4-diaminopropanoic acid (Dap).


Subject(s)
Imidazolines/chemistry , Neuropeptides/chemistry , Peptides/chemistry , beta-Alanine/analogs & derivatives , Animals , Chemistry, Organic/methods , Ethers/chemistry , Insect Hormones/chemistry , Insecta , Magnetic Resonance Spectroscopy , Polymers/chemistry , Propionates/chemistry , Solid-Phase Synthesis Techniques , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , beta-Alanine/chemistry
3.
Molecules ; 26(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467522

ABSTRACT

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Subject(s)
Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Amino Acids/chemistry , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , Computer Simulation , Cosmeceuticals/chemistry , Cosmeceuticals/therapeutic use , Dietary Supplements , Gene Transfer Techniques , Humans , Lactoferrin/chemistry , Lipid Bilayers , Nanostructures/administration & dosage , Nanostructures/chemistry , Peptides/administration & dosage , Stem Cells , Vaccines, Subunit/chemistry , Vaccines, Subunit/pharmacology , COVID-19 Drug Treatment
4.
Molecules ; 25(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138329

ABSTRACT

The success of innovative drugs depends on an interdisciplinary and holistic approach to their design and development. The supramolecular architecture of living systems is controlled by non-covalent interactions to a very large extent. The latter are prone to extensive cooperation and like a virtuoso play a symphony of life. Thus, the design of effective ligands should be based on thorough knowledge on the interactions at either a molecular or high topological level. In this work, we emphasize the importance of supramolecular structure and ligand-based design keeping the potential of supramolecular H-bonding synthons in focus. In this respect, the relevance of supramolecular chemistry for advanced therapies is appreciated and undisputable. It has developed tools, such as Hirshfeld surface analysis, using a huge data on supramolecular interactions in over one million structures which are deposited in the Cambridge Structure Database (CSD). In particular, molecular interaction surfaces are useful for identification of macromolecular active sites followed by in silico docking experiments. Ornithine-derived compounds are a new, promising class of multi-targeting ligands for innovative therapeutics and cosmeceuticals. In this work, we present the synthesis together with the molecular and supramolecular structure of a novel ornithine derivative, namely N-α,N-δ)-dibenzoyl-(α)-hydroxymethylornithine, 1. It was investigated by modern experimental and in silico methods in detail. The incorporation of an aromatic system into the ornithine core induces stacking interactions, which are vital in biological processes. In particular, rare C=O…π intercontacts have been identified in 1. Supramolecular interactions were analyzed in all structures of ornithine derivatives deposited in the CSD. The influence of substituent was assessed by the Hirshfeld surface analysis. It revealed that the crystal packing is stabilized mainly by H…O, O…H, C…H, Cl (Br, F)…H and O…O interactions. Additionally, π…π, C-H…π and N-O…π interactions were also observed. All relevant H-bond energies were calculated using the Lippincott and Schroeder H-bond model. A library of synthons is provided. In addition, the large synthons (Long-Range Synthon Aufbau Module) were considered. The DFT optimization either in vacuo or in solutio yields very similar molecular species. The major difference with the relevant crystal structure was related to the conformation of terminal benzoyl C15-C20 ring. Furthermore, in silico prediction of the extensive physicochemical ADME profile (absorption, distribution, metabolism and excretion) related to the drug-likeness and medicinal chemistry friendliness revealed that a novel ornithine derivative 1 has the potential to be a new drug candidate. It has shown good in silico absorption and very low toxicity.


Subject(s)
Ornithine/chemistry , Databases, Factual , Hydrogen Bonding , Molecular Conformation , Molecular Structure
5.
Gen Comp Endocrinol ; 278: 58-67, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30107140

ABSTRACT

Insect kinins modulate aspects of diuresis, digestion, development, and sugar taste perception in tarsi and labellar sensilla in mosquitoes. They are, however, subject to rapid biological degradation by endogenous invertebrate peptidases. A series of α-aminoisobutyric (Aib) acid-containing insect kinin analogs incorporating sequences native to the Aedes aegypti mosquito aedeskinins were evaluated on two recombinant kinin invertebrate receptors stably expressed in cell lines, discovering a number of highly potent and biostable insect kinin mimics. On the Ae. aegypti mosquito kinin receptor, three highly potent, biostable Aib analogs matched the activity of the Aib-containing biostable insect kinin analog 1728, which previously showed disruptive and/or aversive activity in aphid, mosquito and kissing bug. These three analogs are IK-Aib-19 ([Aib]FY[Aib]WGa, EC50 = 18 nM), IK-Aib-12 (pQKFY[Aib]WGa, EC50 = 23 nM) and IK-Aib-20 ([Aib]FH[Aib]WGa, EC50 = 28 nM). On the Rhipicephalus (Boophilus) microplus tick receptor, IK-Aib-20 ([Aib]FH[Aib]WGa, EC50 = 2 nM) is more potent than 1728 by a factor of 3. Seven other potentially biostable analogs exhibited an EC50 range of 5-10 nM, all of which match the potency of 1728. Among the multi-Aib hexapeptide kinin analogs tested the tick receptor has a preference for the positively-charged, aromatic H over the aromatic residues Y and F in the X1 variable position ([Aib]FX1[Aib]WGa), whereas the mosquito receptor does not distinguish between them. In contrast, in a mono-Aib pentapeptide analog framework (FX1[Aib]WGa), both receptors exhibit a preference for Y over H in the variable position. Among analogs incorporating polyethylene glycol (PEG) polymer attachments at the N-terminus that can confer enhanced bioavailability and biostability, three matched or surpassed the potency of a positive control peptide. On the tick receptor IK-PEG-9 (P8-R[Aib]FF[Aib]WGa) was the most potent. Two others, IK-PEG-8 (P8-RFFPWGa) and IK-PEG-6 (P4-RFFPWGa), were most potent on the mosquito receptor, with the first surpassing the activity of the positive control peptide. These analogs and others in the IK-Aib series expand the toolbox of potent analogs accessible to invertebrate endocrinologists studying the structural requirements for bioactivity and the as yet unknown role of the insect kinins in ticks. They may contribute to the development of selective, environmentally friendly pest arthropod control agents.


Subject(s)
Aedes/drug effects , Aminoisobutyric Acids/chemistry , Kinins/pharmacology , Pest Control , Polyethylene Glycols/chemistry , Receptors, G-Protein-Coupled/metabolism , Rhipicephalus/drug effects , Aedes/metabolism , Amino Acid Sequence , Animals , Biological Availability , Kinins/chemistry , Rhipicephalus/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem ; 25(16): 4265-4276, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28662964

ABSTRACT

Cyclolinopeptide A (CLA), an immunosuppressive nonapeptide derived from linen seeds, was modified with S or R-γ4-bis(homo-phenylalanine) in positions 3 or 4, or both 3 and 4. These modifications changed the flexibility of new analogues and distribution of intramolecular hydrogen bonds. Analogues 11 c(Pro1-Pro2-Phe3-S-γ4-hhPhe4-Leu5-Ile6-Ile7-Leu8-Val9), 13 c(Pro1-Pro2-S-γ4-hhPhe3-R-γ4-hhPhe4-Leu5-Ile6-Ile7-Leu8-Val9) and 15 c(Pro1-Pro2-R-γ4-hhPhe3-Phe4-Leu5-Ile6-Ile7-Leu8-Val9) existed as a mixture of stable cis/trans isomers of Pro-Pro peptide bond. The comparison of the relative spatial orientations in crystal state of the two carbonyl groups, neighboring γ-amino acids, revealed conformational similarities to α-peptides. The addition of two -CH2- groups in γ-amino acids led to a more rigid conformation, although a more flexible one was expected. A significant difference in the relative orientation of the carbonyl groups was found for cyclic γ-peptides with a dominance of an antiparallel arrangement. As carbonyl groups may be engaged in the interactions with plausible receptors through hydrogen bonds, a similar biological activity of the modified peptides was expected. Our biological studies showed that certain cyclic, but not the corresponding linear peptides, lowered the viability of peripheral blood mononuclear cells (PBMC) at 100µg/mL concentration. The proliferation of PBMC induced by phytohemagglutinin A (PHA) was strongly inhibited by cyclic peptides only, in a dose-dependant manner. On the other hand, lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) production in whole blood cell cultures was inhibited by both linear and cyclic peptides. Peptide 15 c(Pro1-Pro2-R-γ4-hhPhe3-Phe4-Leu5-Ile6-Ile7-Leu8-Val9) blocked the expression of caspase-3, inhibited the expression of caspases-8 and -9 in 24h culture of Jurkat cells, and caused DNA fragmentation in these cells, as an indicator of apoptosis. Thus, we revealed a new mechanism of immunosuppressive action of a nonapeptide.


Subject(s)
Aminobutyrates/pharmacology , Leukocytes, Mononuclear/drug effects , Peptides, Cyclic/pharmacology , Aminobutyrates/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Jurkat Cells , Lipopolysaccharides/pharmacology , Molecular Structure , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Structure-Activity Relationship
7.
Proc Natl Acad Sci U S A ; 108(41): 16922-6, 2011 Oct 11.
Article in English | MEDLINE | ID: mdl-21940497

ABSTRACT

The dormant state known as diapause is widely exploited by insects to circumvent winter and other adverse seasons. For an insect to survive, feed, and reproduce at the appropriate time of year requires fine coordination of the timing of entry into and exit from diapause. One of the hormones that regulates diapause in moths is the 24-aa neuropeptide, diapause hormone (DH). Among members of the Helicoverpa/Heliothis complex of agricultural pests, DH prompts the termination of pupal diapause. Based on the structure of DH, we designed several agonists that are much more active than DH in breaking diapause. One such agonist that we describe also prevents the entry into pupal diapause when administered to larvae that are environmentally programmed for diapause. In addition, we used the unique antagonist development strategy of incorporating a dihydroimidazole ("Jones") trans-Proline mimetic motif into one of our DH agonists, thereby converting the agonist into a DH antagonist that blocks the termination of diapause. These results suggest potential for using such agents or next-generation derivatives for derailing the success of overwintering in pest species.


Subject(s)
Moths/drug effects , Moths/growth & development , Neuropeptides/agonists , Neuropeptides/antagonists & inhibitors , Animals , Drug Design , Insect Control/methods , Larva/drug effects , Larva/growth & development , Metamorphosis, Biological/drug effects , Moths/pathogenicity , Moths/physiology , Neuropeptides/physiology , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Oligopeptides/pharmacology , Pupa/drug effects , Pupa/growth & development , Zea mays/parasitology
8.
Org Biomol Chem ; 10(33): 6705-16, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22806447

ABSTRACT

This paper presents the synthesis and solution conformational studies of the tripeptides Fmoc-Ala-(R)-(αMe)Ser(Ψ(H,H)Pro)-Ala-OBu(t) (6a) and Fmoc-Ala-(S)-(αMe)Ser(Ψ(H,H)Pro)-Ala-OBu(t) (6b). Additionally, the X-ray structure of 6a is given. NMR analysis corroborated by theoretical calculations (XPLOR) shows that in both peptides the amide bond between pseudoproline and the preceding amino acid is in the trans conformation. The same amide bond geometry was observed in the crystal state of 6a. The latter is additionally influenced by the presence of two symmetrically independent molecules in an asymmetric unit. Both molecules adopt a conformation which resembles ß-turn type II, stabilized by hydrogen bonding. The conformational preferences and prolyl cis-trans isomerization of Ac-(αMe)Ser(Ψ(H,H)Pro)-NHMe (7) were explored at the IEFPCM/B3LYP/6-31+G(d) level of theory in vacuum, water and chloroform. It has been shown that the trans isomer predominates in water solutions and the cis isomer is preferred in chloroform. The conformation of 7 is down-puckered independently of the geometry of the amide bonds, with lower puckering in the transition state of the cis-trans isomerization.

9.
Insect Sci ; 29(2): 521-530, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34263534

ABSTRACT

Insect CAPA neuropeptidesare considered to affect water and ion balance by mediating the physiological metabolism activities of the Malpighian tubules. In previous studies, the CAPA-PK analogue 1895 (2Abf-Suc-FGPRLamide) was reported to decrease aphid fitness when administered through microinjection or via topical application. However, a further statistically significant decrease in the fitness of aphids and an increased mortality could not be established with pairwise combinations of 1895 with other CAPA analogue. In this study, we assessed the topical application of new combinations of 1895 with five CAPA-PVK analogues on the fitness of aphids. We found that 1895 and CAPA-PVK analogue 2315 (ASG-[ß3 L]-VAFPRVamide) was statistically the most effective combination to control the peach potato aphid Myzus persicae nymphs via topical application, leading to 72% mortality. Additionally, the combination (1895+2315) was evaluated against a selection of beneficial insects, that is, a pollinator (Bombus terrestris) and three natural enemies (Chrysoperla carnea, Nasonia vitripennis, and Adalia bipunctata). We found no significant influence on food intake, weight increase, and survival for the pollinator and the three representative natural enemies. These results could facilitate to further establish and generate CAPA analogues as alternatives to broad spectrum and less friendly insecticides.


Subject(s)
Aphids , Insecticides , Neuropeptides , Animals , Aphids/physiology , Containment of Biohazards , Insecta , Insecticides/pharmacology , Neuropeptides/pharmacology
10.
Sci Rep ; 12(1): 17263, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241660

ABSTRACT

The devastating Varroa mite (Varroa destructor Anderson and Trueman) is an obligatory ectoparasite of the honey bee, contributing to significant colony losses in North America and throughout the world. The limited number of conventional acaricides to reduce Varroa mites and prevent disease in honey bee colonies is challenged with wide-spread resistance and low target-site selectivity. Here, we propose a biorational approach using comparative genomics for the development of honey bee-safe and selective acaricides targeting the Varroa mite-specific neuropeptidergic system regulated by proctolin, which is lacking in the honey bee. Proctolin is a highly conserved pentapeptide RYLPT (Arg-Tyr-Leu-Pro-Thr) known to act through a G protein-coupled receptor to elicit myotropic activity in arthropod species. A total of 33 different peptidomimetic and peptide variants were tested on the Varroa mite proctolin receptor. Ligand docking model and mutagenesis studies revealed the importance of the core aromatic residue Tyr2 in the proctolin ligand. Peptidomimetics were observed to have significant oral toxicity leading to the paralysis and death of Varroa mites, while there were no negative effects observed for honey bees. We have demonstrated that a taxon-specific physiological target identified by advanced genomics information offers an opportunity to develop Varroa mite-selective acaricides, hence, expedited translational processes.


Subject(s)
Acaricides , Peptidomimetics , Varroidae , Acaricides/pharmacology , Animals , Bees/genetics , Genomics , Ligands , Peptidomimetics/pharmacology , Varroidae/physiology
11.
Acta Crystallogr C Struct Chem ; 76(Pt 4): 328-345, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32229714

ABSTRACT

Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc-tyrosine or Fmoc-phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc-protected amino acid, namely, 2-{[(9H-fluoren-9-ylmethoxy)carbonyl](methyl)amino}-3-{4-[(2-hydroxypropan-2-yl)oxy]phenyl}propanoic acid or N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, Fmoc-N-Me-Tyr(t-Bu)-OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single-crystal X-ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N-Fmoc-phenylalanine [Draper et al. (2015). CrystEngComm, 42, 8047-8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H...H, C...H/H...C and O...H/H...O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen-bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C-H...O, C-H...π, (fluorenyl)C-H...Cl(I), C-Br...π(fluorenyl) and C-I...π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long-Range Synthon Aufbau Modules, further supported by energy-framework calculations, are discussed. Furthermore, the relevance of Fmoc-based supramolecular hydrogen-bonding patterns in biocomplexes are emphasized, for the first time.


Subject(s)
Amino Acids/chemistry , Fluorenes/chemical synthesis , Methyltyrosines/chemistry , Phenylalanine/chemistry , Amino Acids/chemical synthesis , Computer Simulation , Crystallography, X-Ray , Fluorenes/chemistry , Hydrogen Bonding , Molecular Conformation , Surveys and Questionnaires
12.
Pest Manag Sci ; 76(10): 3423-3431, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31794138

ABSTRACT

BACKGROUND: Kinins are multifunctional neuropeptides that regulate key insect physiological processes such as diuresis, feeding, and ecdysis. However, the physiological roles of kinins in ticks are unclear. Furthermore, ticks have an expanded number of kinin paracopies in the kinin gene. Silencing the kinin receptor (KR) in females of Rhipicephalus microplus reduces reproductive fitness. Thus, it appears the kinin signaling system is important for tick physiology and its disruption may have potential for tick control. RESULTS: We determined the activities of endogenous kinins on the KR, a G protein-coupled receptor, and identified potent peptidomimetics. Fourteen predicted R. microplus kinins (Rhimi-K), and 11 kinin analogs containing aminoisobutyric acid (Aib) were tested. The latter incorporated tick kinin sequences and/or were modified for enhanced resistance to arthropod peptidases. A high-throughput screen using a calcium fluorescence assay in 384-well plates was performed. All tested kinins and Aib analogs were full agonists. The most potent kinin and two kinin analogs were equipotent. Analogs 2414 ([Aib]FS[Aib]WGa) and 2412 ([Aib]FG[Aib]WGa) were the most active with EC50 values of 0.9 and 1.1 nM, respectively, matching the EC50 of the most potent tick kinin, Rhimi-K-14 (QDSFNPWGa) (EC50  = 1 nM). The potent analog 2415 ([Aib]FR[Aib]WGa, EC50  = 6.8 nM) includes both Aib molecules for resistance to peptidases and a positively charged residue, R, for enhanced water solubility and amphiphilic character. CONCLUSION: These tick kinins and pseudopeptides expand the repertoire of reagents for tick physiology and toxicology towards finding novel targets for tick management. © 2019 Society of Chemical Industry.


Subject(s)
Rhipicephalus , Animals , Cattle , Female , Kinins , Neuropeptides , Peptidomimetics
13.
Pharmaceutics ; 12(11)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126725

ABSTRACT

A cyclic tetrapeptide Pro-Pro-Pheß3ho-Phe (4B8M) was tested for immunosuppressive activity and potential therapeutic utility in several in vitro and in vivo mouse and human models. The tetrapeptide was less toxic for mouse splenocytes in comparison to cyclosporine A (CsA) and a parent cyclolinopeptide (CLA). The tetrapeptide demonstrated potent anti-inflammatory properties in antigen-specific skin inflammatory reactions to oxazolone and toluene diisocyanate as well to nonspecific irritants such as salicylic acid. It also inhibited inflammatory processes in an air pouch induced by carrageenan. In addition, 4B8M proved effective in amelioration of animal models corresponding to human diseases, such as nonspecific colon inflammation induced by dextran sulfate and allergic pleurisy induced by ovalbumin (OVA) in sensitized mice. The tetrapeptide lowered expression of EP1 and EP3 but not EP2 and EP4 prostaglandin E2 (PGE2) receptors on lipopolysaccharide-stimulated Jurkat T cells and ICAM-1 expression on human peripheral blood mononuclear cells (PBMC). Its anti-inflammatory property in the carrageenan reaction was blocked by EP3 and EP4 antagonists. In addition, 4B8M induced an intracellular level of PGE2 in a human KERTr keratinocyte cell line. In conclusion, 4B8M is a low toxic and effective inhibitor of inflammatory disorders with potential therapeutic use, affecting the metabolism of prostanoid family molecules.

14.
Insect Biochem Mol Biol ; 125: 103362, 2020 10.
Article in English | MEDLINE | ID: mdl-32730893

ABSTRACT

Neuropeptides belonging to the adipokinetic hormone (AKH) family elicit metabolic effects as their main function in insects, by mobilizing trehalose, diacylgycerol, or proline, which are released from the fat body into the hemolymph as energy sources for muscle contraction required for energy-intensive processes, such as locomotion. One of the AKHs produced in locusts is a decapeptide, Locmi-AKH-I (pELNFTPNWGT-NH2). A head-to-tail cyclic, octapeptide analog of Locmi-AKH-I, cycloAKH (cyclo[LNFTPNWG]) was synthesized to severely restrict the conformational freedom of the AKH structure. In vitro, cycloAKH selectively retains full efficacy on a pest insect (desert locust) AKH receptor, while showing little or no activation of the AKH receptor of a beneficial insect (honeybee). Molecular dynamic analysis incorporating NMR data indicate that cycloAKH preferentially adopts a type II ß-turn under micelle conditions, whereas its linear counterpart and natural AKH adopts a type VI ß-turn under similar conditions. CycloAKH, linear LNFTPNWG-NH2, and Locmi-AKH-I feature the same binding site during docking simulations with the desert locust AKH receptor (Schgr-AKHR), but differ in the details of the ligand/receptor interactions. However, cycloAKH failed to enter the binding pocket of the honeybee receptor 3D model during docking simulations. Since the locust AKH receptor has a greater tolerance than the honeybee receptor for the cyclic conformational constraint in vitro receptor assays, it could suggest a greater tolerance for a shift in the direction of the type II ß turn exhibited by cycloAKH from the type VI ß turn of the linear octapeptide and the native locust decapeptide AKH. Selectivity in biostable mimetic analogs could potentially be enhanced by incorporating conformational constraints that emphasize this shift. Biostable mimetic analogs of AKH offer the potential of selectively disrupting AKH-regulated processes, leading to novel, environmentally benign control strategies for pest insect populations.


Subject(s)
Bees , Grasshoppers , Insect Hormones/agonists , Oligopeptides/agonists , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptors, Neuropeptide/chemistry , Animals , Bees/metabolism , Binding Sites , Grasshoppers/metabolism , Insect Control , Insect Hormones/chemical synthesis , Insect Hormones/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Magnetic Resonance Imaging/methods , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Neuropeptides/agonists , Neuropeptides/chemical synthesis , Neuropeptides/metabolism , Oligopeptides/chemical synthesis , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/agonists , Pyrrolidonecarboxylic Acid/chemical synthesis , Pyrrolidonecarboxylic Acid/metabolism , Receptors, Neuropeptide/metabolism
15.
Peptides ; 132: 170365, 2020 10.
Article in English | MEDLINE | ID: mdl-32622694

ABSTRACT

The synthesis of new analogues of cyclolinopeptide A (CLA) and their linear precursors modified with (R)- and (S)-4-methylpseudoproline in the Pro3-Pro4 fragment are presented. The peptides were tested in comparison with cyclosporine A (CsA) in concanavalin A (Con A) and pokeweed mitogen (PWM)-induced mouse splenocyte proliferation and in secondary humoral immune response in vitro to sheep erythrocytes (SRBC). Their effects on expression of selected signaling molecules in the Jurkat T cell line were also determined. In addition, the structural features of the peptides, applying nuclear magnetic resonance and circular dichroism, were analyzed. The results showed that only peptides 7 and 8 modified with (R)-4-methylpseudoproline residue (c(Leu1-Val2-(R)-(αMe)Ser(ΨPro)3-Pro4-Phe5-Phe6-Leu7-Ile8-Ile9) and c(Leu1-Val2-Pro3-(R)-(αMe)Ser(ΨPro)4-Phe5-Phe6-Leu7-Ile8-Ile9), respectively) strongly suppressed mitogen-induced splenocyte proliferation and the humoral immune response, with peptide 8 being more potent. Likewise, peptide 8 more strongly elevated expression of Fas, a proapoptotic signaling molecule in Jurkat cells. We postulate that the increased biological activity of peptide 8, compared to the parent molecule and other studied peptides, resulted from its more flexible structure, found on the basis of both CD and NMR studies. CD and NMR spectra showed that replacement of Pro3 by (R)-(αMe)Ser(¬Pro) caused much greater conformational changes than the same replacement of the Pro4 residue. Such a modification could lead to increased conformational freedom of peptide 8, resulting in a greater ability to adopt a more compact structure, better suited to its putative receptor. In conclusion, peptide 8 is a potent immune suppressor which may find application in controlling immune disorders.


Subject(s)
Immune System Diseases/drug therapy , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Proline/analogs & derivatives , Thiazoles/chemistry , Thiazoles/pharmacology , Amino Acid Sequence , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Circular Dichroism/methods , Female , Humans , Immune System Diseases/immunology , Immune System Diseases/metabolism , Immunosuppressive Agents/chemical synthesis , Lymphocytes/cytology , Lymphocytes/drug effects , Magnetic Resonance Spectroscopy/methods , Male , Mice , Mice, Inbred CBA , Peptides, Cyclic/chemical synthesis , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacology , Sheep , Spleen/cytology , Spleen/drug effects , Structure-Activity Relationship , Thiazoles/chemical synthesis
16.
Bioorg Med Chem ; 17(12): 4216-20, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19356938

ABSTRACT

The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in insects, including regulation of sex pheromone biosynthesis in moths. A cyclic PK/PBAN analog (cyclo[NTSFTPRL]) retains significant activity on the pheromonotropic HevPBANR receptor from the tobacco budworm Heliothis virescens expressed in CHO-K1 cells. Previous studies indicate that this rigid, cyclic analog adopts a type I beta-turn with a transPro over residues TPRL within the core PK/PBAN region. An analog containing an (E)-alkene, trans-Pro mimetic motif was synthesized, and upon evaluation on the HevPBANR receptor found to have an EC(50) value that is not statistically different from a parent C-terminal PK/PBAN hexapeptide sequence. The results, in aggregate, provide strong evidence for the orientation of Pro and the core conformation of PK/PBAN neuropeptides during interaction with the expressed PBAN receptor. The work further identifies a novel scaffold with which to design mimetic PBAN analogs as potential leads in the development of environmentally favorable pest management agents capable of disrupting PK/PBAN-regulated pheromone signaling systems.


Subject(s)
Insecticides/chemistry , Neuropeptides/chemistry , Proline/chemistry , Receptors, Neuropeptide/chemistry , Alkenes/chemical synthesis , Alkenes/chemistry , Alkenes/pharmacology , Amino Acid Sequence , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Insecticides/chemical synthesis , Insecticides/pharmacology , Lepidoptera/drug effects , Molecular Sequence Data , Neuropeptides/pharmacology , Protein Binding , Receptors, Neuropeptide/metabolism , Transfection
17.
PLoS One ; 13(2): e0193058, 2018.
Article in English | MEDLINE | ID: mdl-29474388

ABSTRACT

Natalisins (NTLs) are conservative neuropeptides, which are only found in arthropods and are documented to regulate reproductive behaviors in insects. In our previous study, we have confirmed that NTLs regulate the reproductive process in an important agricultural pest, Bactrocera dorsalis (Hendel). Hence, in this study, to further confirm the in vivo function of NTL receptor (NTLR) and assess the potential of NTLR as an insecticide target, RNA interference targeting NTLR mRNA was performed. We found that mating frequencies of both males and females were reduced by RNAi-mediated knockdown of the NTLR transcript, while there was no effect on mating duration. Moreover, we functionally expressed the B. dorsalis NTLR in Chinese Hamster Ovary (CHO) cells and was co-transfected with an aequorin reporter to measure ligand activities. A total of 13 biostable multi-Aib analogs were tested for agonistic and antagonistic activities. While most of these NTL analogs did not show strong activity, one analog (NLFQV[Aib]DPFF[Aib]TRamide) had moderate antagonistic activity. Taken together, we provided evidence for the important roles of NTLR in regulating mating frequencies of both male and female in this fly and also provided in vitro data on mimetic analogs that serve as leading structures for the development of agonists and antagonists to disrupt the NTL signaling pathway.


Subject(s)
Insect Proteins/physiology , Neuropeptides/physiology , Peptidomimetics/pharmacology , Receptors, Neuropeptide/physiology , Sexual Behavior, Animal/physiology , Tephritidae/physiology , Amino Acid Sequence , Animals , CHO Cells , Cricetulus , Female , Gene Knockdown Techniques , Genes, Insect , Insect Proteins/drug effects , Insect Proteins/genetics , Male , Peptidomimetics/chemistry , Receptors, Neuropeptide/drug effects , Receptors, Neuropeptide/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Sexual Behavior, Animal/drug effects , Signal Transduction/drug effects , Tephritidae/genetics
18.
Peptides ; 28(1): 146-52, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17134792

ABSTRACT

The insect kinins are present in a wide variety of insects and function as potent diuretic peptides in flies. A C-terminal aldehyde insect kinin analog, Fmoc-RFFPWG-H (R-LK-CHO), demonstrates stimulation of Malpighian tubule fluid secretion in crickets, but shows inhibition of both in vitro and in vivo diuresis in the housefly. R-LK-CHO reduced the total amount of urine voided over 3 h from flies injected with 1 microL of distilled water by almost 50%. The analog not only inhibits stimulation of housefly fluid secretion by the native kinin Musdo-K, but also by thapsigargin, a SERCA inhibitor, and by ionomycin, a calcium ionophore. The activity of R-LK-CHO is selective, however, as related C-terminal aldehyde analogs do not demonstrate an inhibitory response on housefly fluid secretion. The selective inhibitory activity of R-LK-CHO on housefly tubules represents an important lead in the development of environmentally friendly insect management agents based on the insect kinins.


Subject(s)
Diuresis/drug effects , Houseflies/drug effects , Kinins/pharmacology , Aldehydes/chemical synthesis , Aldehydes/chemistry , Aldehydes/pharmacology , Animals , Dose-Response Relationship, Drug , Houseflies/metabolism , Kinins/chemical synthesis , Kinins/chemistry
19.
J Med Chem ; 49(6): 2016-21, 2006 Mar 23.
Article in English | MEDLINE | ID: mdl-16539389

ABSTRACT

It is generally accepted that the conformation of the N-terminal part of neurohypophyseal hormones analogues is important for their pharmacological activity. In this work, we decided to investigate how the substitution of positions 2 and 3 with the ethylene-bridged dipeptide would alter the pharmacological properties of OT, [Mpa1]OT, and [Cpa1]OT (OT=oxytocin; Mpa=3-mercaptopropionic acid; Cpa=1-mercaptocyclohexaneacetic acid) and to investigate how a bulky 3,3-diphenyl-L-alanine residue incorporated in position 2 of AVP, [Mpa1]AVP, and [Cpa1]AVP (AVP=arginine vasopressin) would change the pharmacological profile of the compounds. The next analogues, [Val4]AVP, [Mpa1,Val4]AVP, and [Cpa1,Val4]AVP, had N-benzyl-L-alanine introduced at position 3. The last peptide was designed by Cys1 substitution in AVP by its sterically restricted bulky counterpart, alpha-hydroxymethylcysteine. All the peptides were tested for their in vitro uterotonic, pressor, and antidiuretic activities in the rat. The results of these assays showed that the reduction of conformational freedom of the N-terminal part of the molecule had a significant impact on pharmacological activities.


Subject(s)
Arginine Vasopressin/analogs & derivatives , Arginine Vasopressin/chemical synthesis , Dipeptides/chemical synthesis , Oxytocin/analogs & derivatives , Oxytocin/chemical synthesis , 3-Mercaptopropionic Acid/chemistry , Animals , Antidiuretic Agents/chemical synthesis , Antidiuretic Agents/pharmacology , Arginine Vasopressin/pharmacology , Dipeptides/pharmacology , Female , Male , Molecular Conformation , Oxytocin/pharmacology , Rats , Rats, Wistar , Structure-Activity Relationship , Uterine Contraction/drug effects , Vasoconstrictor Agents/chemical synthesis , Vasoconstrictor Agents/pharmacology
20.
Acta Biochim Pol ; 53(1): 65-72, 2006.
Article in English | MEDLINE | ID: mdl-16496037

ABSTRACT

The aim of the investigation was to establish the chelating ability of a new proctolin analogue of the sequence Arg-Tyr-LeuPsi[CN(4)]Ala-Thr towards copper(II) ions. The insertion of the tetrazole moiety into the peptide sequence has considerably changed the coordination ability of the ligand. Potentiometric and spectroscopic (UV-Vis, CD, EPR) results indicate that the incorporation of 1,5-disubstituted tetrazole ring favours the formation of a stable complex form of CuH(-1)L. This 4N coordination type complex is the dominant species in the physiological pH range. The tetrazole moiety provides one of these nitrogens. The data indicate that Cu(II) ions are strongly trapped inside the peptide backbone. These findings suggest that Cu(II) can hold peptide chains in a bent conformation. This bent conformation may be essential for bioactivity of the tetrazole peptides.


Subject(s)
Chelating Agents/pharmacology , Neuropeptides/pharmacology , Oligopeptides/pharmacology , Tetrazoles/pharmacology , Circular Dichroism , Copper/chemistry , Electron Spin Resonance Spectroscopy , Electrons , Hydrogen-Ion Concentration , Ions , Models, Chemical , Nitrogen/chemistry , Potentiometry , Spectrophotometry , Temperature , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL