Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892252

ABSTRACT

Muscular atrophy is a complex catabolic condition that develops due to several inflammatory-related disorders, resulting in muscle loss. Tumor necrosis factor alpha (TNF-α) is believed to be one of the leading factors that drive inflammatory response and its progression. Until now, the link between inflammation and muscle wasting has been thoroughly investigated, and the non-coding RNA machinery is a potential connection between the candidates. This study aimed to identify specific miRNAs for muscular atrophy induced by TNF-α in the C2C12 murine myotube model. The difference in expression of fourteen known miRNAs and two newly identified miRNAs was recorded by next-generation sequencing between normal muscle cells and treated myotubes. After validation, we confirmed the difference in the expression of one novel murine miRNA (nov-mmu-miRNA-1) under different TNF-α-inducing conditions. Functional bioinformatic analyses of nov-mmu-miRNA-1 revealed the potential association with inflammation and muscle atrophy. Our results suggest that nov-mmu-miRNA-1 may trigger inflammation and muscle wasting by the downregulation of LIN28A/B, an anti-inflammatory factor in the let-7 family. Therefore, TNF-α is involved in muscle atrophy through the modulation of the miRNA cellular machinery. Here, we describe for the first time and propose a mechanism for the newly discovered miRNA, nov-mmu-miRNA-1, which may regulate inflammation and promote muscle atrophy.


Subject(s)
MicroRNAs , Muscular Atrophy , Tumor Necrosis Factor-alpha , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/chemically induced , Cell Line , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/drug effects , Gene Expression Regulation/drug effects , High-Throughput Nucleotide Sequencing
2.
Phys Chem Chem Phys ; 25(25): 16796-16806, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37338271

ABSTRACT

A new tetrahydroacridine derivative (CHDA) with acetylcholinesterase inhibitory properties was synthesized. Using a range of physicochemical techniques, it was shown that the compound strongly adsorbs onto the surface of planar macroscopic or nanoparticulate gold, forming a nearly full monolayer. The adsorbed CHDA molecules reveal well-defined electrochemical behavior, being irreversibly oxidized to electroactive species. The CHDA also exhibits strong fluorescence, which is effectively quenched after adsorption onto gold via a static quenching mechanism. Both CHDA and its conjugate reveal considerable inhibitory properties against acetylcholinesterase activity, which is promising from the perspective of therapeutic application in the treatment of Alzheimer's disease. Moreover, both agents appear to be non-toxic as demonstrated using in vitro studies. On the other hand, conjugation of CHDA with nanoradiogold particles (Au-198) offers new potential diagnostic perspectives in medical imaging.


Subject(s)
Alzheimer Disease , Gold Radioisotopes , Metal Nanoparticles , Humans , Alzheimer Disease/drug therapy , Acetylcholinesterase , Gold/chemistry , Gold Radioisotopes/therapeutic use , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry
3.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239921

ABSTRACT

Vitamins play a crucial role in the proper functioning of organisms. Disturbances of their levels, seen as deficiency or excess, enhance the development of various diseases, including those of the cardiovascular, immune, or respiratory systems. The present paper aims to summarize the role of vitamins in one of the most common diseases of the respiratory system, asthma. This narrative review describes the influence of vitamins on asthma and its main symptoms such as bronchial hyperreactivity, airway inflammation, oxidative stress, and airway remodeling, as well as the correlation between vitamin intake and levels and the risk of asthma in both pre- and postnatal life.


Subject(s)
Asthma , Bronchial Hyperreactivity , Humans , Vitamins/therapeutic use , Asthma/etiology , Asthma/diagnosis , Vitamin A , Vitamin K
4.
Int J Mol Sci ; 24(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37373289

ABSTRACT

Colorectal cancer is a diet-related cancer. There is much research into the effects of nutrients on the prevention, modulation, and treatment of colorectal cancer. Researchers are trying to find a correlation between epidemiological observations indicating certain dietary components as the originator in the process of developing colorectal cancer, such as a diet rich in saturated animal fats, and dietary components that could eliminate the impact of harmful elements of the daily nutritional routine, i.e., substances such as polyunsaturated fatty acids, curcumin, or resveratrol. Nevertheless, it is very important to understand the mechanisms underlying how food works on cancer cells. In this case, microRNA (miRNA) seems to be a very significant research target. MiRNAs participate in many biological processes connected to carcinogenesis, progression, and metastasis. However, this is a field with development prospects ahead. In this paper, we review the most significant and well-studied food ingredients and their effects on various miRNAs involved in colorectal cancer.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , MicroRNAs/genetics , Diet , Fatty Acids, Unsaturated , Food , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Dietary Fats
5.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409236

ABSTRACT

BACKGROUND: Muscle atrophy is a complex catabolic condition developing under different inflammatory-related systemic diseases resulting in wasting of muscle tissue. While the knowledge of the molecular background of muscle atrophy has developed in recent years, how the atrophic conditions affect the long non-coding RNA (lncRNAs) machinery and the exact participation of the latter in the mediation of muscle loss are still unknown. The purpose of the study was to assess how inflammatory condition developing under the tumor necrosis factor alpha (TNF-α) treatment affects the lncRNAs' expression in a mouse skeletal muscle cell line. MATERIALS AND METHOD: A C2C12 mouse myoblast cell line was treated with TNF-α to develop atrophy, and inflammatory-related lncRNAs mediating muscle loss were identified. Bioinformatics was used to validate and analyze the discovered lncRNAs. The differences in their expression under different TNF-α concentrations and treatment times were investigated. RESULTS: Five lncRNAs were identified in a discovery set as atrophy related and then validated. Three lncRNAs, Gm4117, Ccdc41os1, and 5830418P13Rik, were selected as being significant for inflammatory-related myotube atrophy. Dynamics changes in the expression of lncRNAs depended on both TNF-α concentration and treatment time. Bioinformatics analysis revealed the mRNA and miRNA target for selected lncRNAs and their putative involvement in the molecular processes related to muscle atrophy. CONCLUSIONS: The inflammatory condition developing in the myotube under the TNF-α treatment affects the alteration of lncRNAs' expression pattern. Experimental and bioinformatics testing suggested the prospective role of lncRNAs in the mediation of muscle loss under an inflammatory state.


Subject(s)
RNA, Long Noncoding , Tumor Necrosis Factor-alpha , Animals , Cell Line , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Prospective Studies , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Molecules ; 27(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36234787

ABSTRACT

The increase in the incidence of cancer has contributed to the search for new therapeutic methods. In recent years, the use of preparations of natural origin from medical fungi has increased. One such active substance is the extracellular, low molecular active fraction obtained from the medicinal fungus Cerrena unicolor. This study aimed to monitor the pharmacokinetics of different concentrations of substances isolated from the medicinal fungus Cerrena unicolor (ex-LMS) using the ECIS technique. In the study, mouse L929 fibroblasts and colon cancer CT26 cell lines were treated with different concentrations of the active fractions obtained from Cerrena unicolor: C1 = 2.285 (µg/mL); C2 = 22.85 (µg/mL); and C3 = 228.5 (µg/mL). This study demonstrated that the tested preparation from Cerrena unicolor had no considerable effect on the resistance, capacitance, and impedance of L929 fibroblast cells, which was an indicator of no significant effect on its physiological processes. At the same time, those parameters exhibited a decrease in colon cancer cell viability. Following our previous and current studies on Cerrena unicolor, ex-LMS extracts can be safely used in anticancer therapy or chemoprevention with no significant harmful effects on normal cells.


Subject(s)
Colonic Neoplasms , Polyporales , Animals , Cell Line , Electric Impedance , Mice , Tomography, X-Ray Computed
7.
Molecules ; 27(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35630627

ABSTRACT

Electric cell-substrate impedance sensing is an advanced in vitro impedance measuring system which uses alternating current to determine behavior of cells in physiological conditions. In this study, we used the abovementioned method for checking the anticancer activities of betulin and betulinic acid, which are some of the most commonly found triterpenes in nature. In our experiment, the threshold concentrations of betulin required to elicit antiproliferative effects, verified by MTT and LDH release methods, were 7.8 µM for breast cancer (T47D), 9.5 µM for lung carcinoma (A549), and 21.3 µM for normal epithelial cells (Vero). The ECIS results revealed the great potential of betulin and betulinic acid's antitumor properties and their maintenance of cytotoxic substances to the breast cancer T47D line. Moreover, both substances showed a negligible toxic effect on healthy epithelial cells (Vero). Our investigation showed that the ECIS method is a proper alternative to the currently used assay for testing in vitro anticancer activity of compounds, and that it should thus be introduced in cellular routine research. It is also a valuable tool for live-monitoring changes in the morphology and physiology of cells, which translates into the accurate development of anticancer therapies.


Subject(s)
Breast Neoplasms , Triterpenes , Electric Impedance , Female , Humans , Triterpenes/chemistry , Triterpenes/pharmacology
8.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164271

ABSTRACT

The biological activity of an in vitro digested infusion of Epilobium angustifolium (fireweed) was examined in a model system of intestinal epithelial and colon cancer tissues. The content of selected phenolic compounds in the digested aqueous extract of fireweed was determined using HPLC-ESI-QTOF-MS/MS. Biological activity was examined using the human colon adenocarcinoma cell lines HT-29 and CaCo-2 and the human colon epithelial cell line CCD 841 CoTr. Cytotoxicity was assessed by an MTT assay, a Neutral Red uptake assay, May-Grünwald-Giemsa staining, and a label-free Electric Cell-Substrate Impedance Sensing cytotoxicity assay. The effect of the infusion on the growth of selected intestinal bacteria was also examined. The extract inhibited the growth of intestinal cancer cells HT-29. This effect can be attributed to the activity of quercetin and kaempferol, which were the most abundant phenolic compounds found in the extract after in vitro digestion. The cytotoxicity of the fireweed infusion was dose-dependent. The highest decrease in proliferation (by almost 80%) compared to the control was observed in HT-29 line treated with the extract at a concentration of 250 µg/mL. The fireweed infusion did not affect the growth of beneficial intestinal bacteria, but it did significantly inhibit E. coli. The cytotoxic effect of the fireweed extract indicates that it does not lose its biological activity after in vitro digestion. It can be concluded that the fireweed infusion has the potential to be used as a supporting agent in colon cancer therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Epilobium/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Caco-2 Cells , Cell Proliferation/drug effects , HT29 Cells , Humans , Neoplasms/drug therapy , Plant Extracts/pharmacology , Polyphenols/pharmacology
9.
Clin Exp Pharmacol Physiol ; 48(8): 1162-1170, 2021 08.
Article in English | MEDLINE | ID: mdl-33851456

ABSTRACT

PK20 is an anti-inflammatory hybrid compound, composed of an endomorphin-2-like and neurotensin-like fragments. The aim of the present study is to assess the contribution of particular pharmacophores to the activity of the hybrid tested. For this purpose, airway hyperresponsiveness, accumulation of inflammatory cells in bronchoalveolar lavage fluid (BALF), concentration of mouse mast cell protease, malondialdehyde and secretory phospholipase 2 activity in lung tissue, as well as production of pro-inflammatory cytokines in BALF and lung were determined by using murine model of non-atopic asthma. Blocking either neurotensin receptors or mu opioid receptors did not alter the potential of PK20 in reducing airway hyperresponsiveness. In studies of inflammatory cells, the beneficial effect of the entire peptide occurs to be mediated by the stimulation of neurotensin receptors. However, regarding cytokine and biochemical assays, pretreatment with both receptor antagonists resulted in a different effect on its activity depending on the parameter studied. To conclude, the activation of both the opioid and neurotensin receptors seems to be necessary to induce the full anti-inflammatory activity of the hybrid compound.


Subject(s)
Analgesics, Opioid , Neurotensin , Receptors, Neurotensin , Animals , Anti-Inflammatory Agents , Mice
10.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948451

ABSTRACT

Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or ß-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.


Subject(s)
Asthma/metabolism , Peptides/metabolism , Receptors, Peptide/metabolism , Animals , Gene Expression Regulation , Humans , Neuropeptide Y/metabolism , Neurotensin/metabolism , Tachykinins/metabolism , beta-Defensins/metabolism
11.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645931

ABSTRACT

Inhalations with brine solutions are old but underestimated add-ons to pharmacological treatments of inflammatory lung diseases. Although widely used, not all features underlying their action on the respiratory system have been explored. The aim of the present study was to elucidate the mechanism of the beneficial action of inhalations of brine solution from the 'Wieliczka' Salt Mine, a Polish health resort, in a murine model of non-atopic asthma. Asthma was induced in BALB/c mice by skin sensitization with dinitrofluorobenzene followed by an intratracheal challenge of cognate hapten. All animals underwent 12 inhalation sessions with brine solution, pure water or physiological saline. Control mice were not inhaled. We found that brine inhalations reduced, as compared to non-inhaled mice, the typical asthma-related symptoms, like airway hyperreactivity (AHR), the infiltration of pro-inflammatory cells into the bronchial tree, and the inflammation of the airways at the level of pro-inflammatory cytokines IL-1α, IL-1ß and IL-6. The level of the anti-inflammatory IL-10 was elevated in brine-inhaled mice. Inhalations with pure water increased AHR, whereas saline had no influence, either on AHR or cytokine concentrations. These observations indicate that inhalations with a brine solution from the 'Wieliczka' Salt Mine diminish the asthma-related symptoms, mostly by reducing the inflammatory status and by decreasing AHR.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Inflammation/drug therapy , Salts/administration & dosage , Administration, Inhalation , Animals , Cytokines/metabolism , Dinitrofluorobenzene/pharmacology , Disease Models, Animal , Haptens/physiology , Lung/drug effects , Male , Mice , Mice, Inbred BALB C
12.
Pulm Pharmacol Ther ; 48: 217-224, 2018 02.
Article in English | MEDLINE | ID: mdl-29223509

ABSTRACT

Regulatory neuropeptides control and regulate breathing in physiological and pathophysiological conditions. While they have been identified in the neurons of major respiratory areas, they can be active not only at the central level, but also at the periphery via chemoreceptors, vagal afferents, or locally within lungs and airways. Some neuropeptides, such as leptin or substance P, are respiratory stimulants; others, such as neurotensin, produce variable effects on respiration depending on the site of application. Some neuropeptides have been implicated in pathological states, such as obstructive sleep apnea or asthma. This article provides a concise review of the possible role and functions of several selected neuropeptides in the process of breathing in health and disease and in lung pathologies.


Subject(s)
Neuropeptides/metabolism , Respiration , Respiratory Physiological Phenomena , Animals , Asthma/physiopathology , Humans , Sleep Apnea, Obstructive/physiopathology
13.
Adv Exp Med Biol ; 1096: 73-82, 2018.
Article in English | MEDLINE | ID: mdl-29623573

ABSTRACT

Lipid derivatives of dopamine are a novel class of compounds raising a research interest due to the potential of their being a vehicle for dopamine delivery to the brain. The aim of the present paper is to review the main features of the two most prominent bioactive members of this family, namely, N-oleoyl-dopamine (OLDA) and 3'-O-methyl-N-oleoyl-dopamine (OMe-OLDA), with emphasis on the possible therapeutic properties.


Subject(s)
Brain/metabolism , Dopamine/analogs & derivatives , Dopamine/metabolism , TRPV Cation Channels/metabolism , Animals , Dopamine/chemistry , Dopamine/pharmacology , Molecular Structure , Motor Activity/drug effects , Oxygen Consumption/drug effects , Protein Binding
14.
Adv Exp Med Biol ; 1023: 37-46, 2018.
Article in English | MEDLINE | ID: mdl-28681186

ABSTRACT

Ventilatory inhibition is considered an undesirable pharmacological side effect of pharmacotherapy in neurodegenerative conditions underlain by brain dopamine deficiency. In this context, oleic derivatives of dopamine or N-acyl-dopamines are novel substances that may be of high therapeutic interest as having the ability to cross the blood-brain barrier and acting in dopamine-like manner. In the present study we seek to define the influence of N-acyl-dopamines on lung ventilation and its hypoxic responses in the rat. We found that N-oleoyl-dopamine decreased both normoxic and peak hypoxic ventilation in response to 8% acute hypoxia, on average, by 31% and 41%, respectively. Its metabolite, 3'-O-methyl-N-oleoyl-dopamine, caused a 15% ventilatory decrease each, whereas an oleic ester derivative, 3'-O-oleoyl-N-oleoyl-dopamine, caused 11% and 19% ventilatory decreases, respectively. All three N-acyl-dopamines investigated displayed an inhibitory effect on ventilation. The findings indicate that 3'-O-methyl-N-oleoyl-dopamine and 3'-O-oleoyl-N-oleoyl-dopamine performed better than N-oleoyl-dopamine in term of less ventilatory suppression, albeit the differences among the three compounds were modest. We conclude that N-acyl-dopamines are worthy of intensified explorations as potential carriers of dopamine molecule in view of the lack of clinically effective methods of dopamine delivery into the brain in neurodegenerative conditions.


Subject(s)
Dopamine/pharmacology , Oleic Acid/chemistry , Respiration/drug effects , Animals , Male , Pulmonary Ventilation/drug effects , Rats, Wistar
15.
Adv Exp Med Biol ; 837: 9-17, 2015.
Article in English | MEDLINE | ID: mdl-25310955

ABSTRACT

Dopamine (DA) is a putative neurotransmitter in the carotid body engaged in the generation of the hypoxic ventilatory response (HVR). However, the action of endogenous DA is unsettled. This study seeks to determine the ventilatory effects of increased availability of endogenous DA caused by inhibition of DA enzymatic breakdown. The peripheral inhibitor of MAO - debrisoquine, or COMT - entacapone, or both combined were injected to conscious rats. Ventilation and its responses to acute 8 % O(2) in N(2) were investigated in a whole body plethysmograph. We found that inhibition of MAO augmented the hyperventilatory response to hypoxia. Inhibition of COMT failed to influence the hypoxic response. However, simultaneous inhibition of both enzymes, the case in which endogenous availability of DA should increase the most, reversed the hypoxic augmentation of ventilation induced by MAO-inhibition. The inference is that when MAO alone is blocked, COMT takes over DA degradation in a compensatory way, which lowers the availability of DA, resulting in a higher intensity of the HVR. We conclude that MAO is the enzyme predominantly engaged in the chemoventilatory effects of DA. Furthermore, the findings imply that endogenous DA is inhibitory, rather than stimulatory, for hypoxic ventilation.


Subject(s)
Carotid Body/physiopathology , Catechol O-Methyltransferase Inhibitors/pharmacology , Dopamine/metabolism , Hyperventilation/etiology , Hypoxia/physiopathology , Monoamine Oxidase Inhibitors/pharmacology , Respiration/drug effects , Adaptation, Physiological/physiology , Animals , Blood Pressure/drug effects , Catechol O-Methyltransferase/physiology , Catechols/pharmacology , Debrisoquin/pharmacology , Dopamine/physiology , Drug Synergism , Hyperventilation/physiopathology , Hyperventilation/prevention & control , Male , Monoamine Oxidase/physiology , Nitriles/pharmacology , Plethysmography, Whole Body , Rats , Rats, Wistar
16.
Adv Exp Med Biol ; 756: 105-11, 2013.
Article in English | MEDLINE | ID: mdl-22836625

ABSTRACT

Mangiferin, the main active substance of the mango tree bark (Mangifera indica L.), is known for its use in natural medicine, not only as a health enhancing panacea or adjunct therapeutic, but also for brain functions improvement. In this context, we deemed it worthwhile to establish whether mangiferin could traverse into the brain after systemic administration; an essential piece of information for the rational use of a compound as a neurotherapeutic, remaining so far inconclusive regarding mangiferin. We addressed this issue by studying recoverability of mangiferin in membrane and cytosolic fractions of rat brain homogenates after its intraperitoneal administration in a dose of 300 mg/kg. We used three preparations of mangiferin of decreasing purity to find out whether its penetration to the brain could have to do with the possible presence of contaminants. The qualitative methods of thin-layered-chromatography and UV/VIS spectrophotometry were employed in this study. The results were clearly negative, as we failed to trace mangiferin in the brain fractions with either method, which makes it unlikely that the compound traverse the blood-brain barrier after being systemically administered. We conclude that it is improbable that mangiferin could act via direct interaction with central neural components, but rather has peripheral, target specific functions which could be secondarily reflected in brain metabolism.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Plant Extracts/pharmacokinetics , Xanthones/pharmacokinetics , Animals , Biological Transport , Injections, Intraperitoneal , Mangifera , Phytotherapy , Plant Extracts/administration & dosage , Rats , Xanthones/administration & dosage
17.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-37259341

ABSTRACT

Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.

18.
J Pers Med ; 12(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36143223

ABSTRACT

According to the World Health Organization, in 2018, cancers, along with over 18 million new cases and over 9.5 million deaths remained one of the main causes of mortality globally. Cancer-cachexia, also called wasting syndrome is a complex, multifactorial disorder characterized by progressive skeletal muscle mass loss, with or without adipose tissue atrophy. It is considered as a state of cancer-related malnutrition (CRM) accompanied by inflammation, that is irreversible despite the introduction of nutritional support. Indication of markers of pre-cachectic state seems to be urgently needed. Moreover, such markers have also potential to be used in the assessment of the effects of anti-cachexia treatment, and prognosis. miRNAs are non-coding RNA molecules that are about 20-30 nucleotides long. Single miRNA has the potential to control from few dozen to several hundred different genes. Despite the fact, that the number of miRNAs keep growing. we are making steady progress in establishing regulatory targets and their physiological levels. In this review we described the current knowledge on the impact of miRNAs on processes involved in cancer cachexia development: inflammation, adipose tissue remodelling, and loss of muscle mass both in animal models and the human cohorts. The available studies suggest that miRNAs, due to their properties, e.g., the possibility of regulating even hundreds of different genes, signalling pathways, and biological processes by one molecule, but also due their stability in biological material, the fact, that the change in their level reflects the disease status or the response to the applied treatment, they have great potential to be used as valuable biomarkers in the diagnosis, treatment, and prognosis of cancer cachexia.

19.
Nutrients ; 13(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34836256

ABSTRACT

Asthma represents one of the most common medical issues in the modern world. It is a chronic inflammatory disease characterized by persistent inflammation of the airways and disturbances in redox status, leading to hyperresponsiveness of bronchi and airway obstruction. Apart from classical risk factors such as air pollution, family history, allergies, or obesity, disturbances of the levels of micronutrients lead to impairments in the defense mechanisms of the affected organism against oxidative stress and proinflammatory stimuli. In the present review, the impact of micronutrients on the prevalence, severity, and possible risk factors of asthma is discussed. Although the influence of classical micronutrients such as selenium, copper, or zinc are well known, the effects of those such as iodine or manganese are only rarely mentioned. As a consequence, the aim of this paper is to demonstrate how disturbances in the levels of micronutrients and their supplementation might affect the course of asthma.


Subject(s)
Asthma , Micronutrients , Asthma/epidemiology , Asthma/immunology , Bronchi , Copper , Dietary Supplements , Humans , Hypersensitivity , Immunity , Inflammation , Manganese , Obesity , Oxidative Stress , Risk Factors , Selenium , Zinc
20.
J Ethnopharmacol ; 281: 114505, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34371115

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inhalations with thermal waters are an old therapeutic method used in the therapy of respiratory diseases as a treatment of choice showing a long-lasting outcome with no side effects. Paradoxically, there is little well-established research on their mechanisms of action. AIM OF THE STUDY: The aim of this paper is therefore to summarize the influence of inhalatory treatment with thermal waters on the main symptoms and features of respiratory disorders including allergy-like symptoms, inflammation, oxidant-anti-oxidant balance, cellular influx, disturbed mucus secretions, recurrent infections, pulmonary and nasal function and quality of life. A short history of inhalations is also presented. MATERIALS AND METHODS: The present paper is a sum-up of research articles on the use of inhalations with thermal waters in respiratory disorders. RESULTS: According to the herein presented literature, the use of thermal water inhalations is beneficial for almost all manifestations of respiratory diseases. The mode of their action remains still unclear; however, it seems that the most important one relies on the restoration of proper defense mechanisms of the organism. CONCLUSIONS: Inhalations with thermal waters alleviate symptoms of respiratory diseases. They also improve the quality of life of the patients and seem to be a good add-on therapy in the treatment of disorders of the respiratory system.


Subject(s)
Balneology , Respiratory Therapy , Respiratory Tract Diseases/therapy , Administration, Inhalation , Animals , Bacterial Infections/therapy , Balneology/history , History, 19th Century , History, Ancient , History, Medieval , Hot Springs , Humans , Inflammation/therapy , Leukocyte Disorders/therapy , Mucus/metabolism , Respiratory Mucosa/metabolism , Respiratory Therapy/history , Virus Diseases/therapy , Water/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL