Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Traffic ; 25(1): e12920, 2024 01.
Article in English | MEDLINE | ID: mdl-37886910

ABSTRACT

Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.


Subject(s)
Hepatolenticular Degeneration , Animals , Humans , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Copper/toxicity , Copper/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Hepatocytes/metabolism
2.
Hum Mol Genet ; 25(12): 2564-2577, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27260405

ABSTRACT

Spinal muscular atrophy is a devastating disease that is characterized by degeneration and death of a specific subclass of motor neurons in the anterior horn of the spinal cord. Although the gene responsible, survival motor neuron 1 (SMN1), was identified 20 years ago, it has proven difficult to investigate its effects in vivo. Consequently, a number of key questions regarding the molecular and cellular functions of this molecule have remained unanswered. We developed a Caenorhabditis elegans model of smn-1 loss-of-function using a neuron-specific RNA interference strategy to knock-down smn-1 selectively in a subclass of motor neurons. The transgenic animals presented a cell-autonomous, age-dependent degeneration of motor neurons detected as locomotory defects and the disappearance of presynaptic and cytoplasmic fluorescent markers in targeted neurons. This degeneration led to neuronal death as revealed by positive reactivity to genetic and chemical cell-death markers. We show that genes of the classical apoptosis pathway are involved in the smn-1-mediated neuronal death, and that this phenotype can be rescued by the expression of human SMN1, indicating a functional conservation between the two orthologs. Finally, we determined that Plastin3/plst-1 genetically interacts with smn-1 to prevent degeneration, and that treatment with valproic acid is able to rescue the degenerative phenotype. These results provide novel insights into the cellular and molecular mechanisms that lead to the loss of motor neurons when SMN1 function is reduced.


Subject(s)
Membrane Glycoproteins/genetics , Microfilament Proteins/genetics , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Nerve Degeneration/genetics , Survival of Motor Neuron 1 Protein/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Disease Models, Animal , Gene Knockdown Techniques , Humans , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/physiopathology , Phenotype , Protein Binding/genetics , Survival of Motor Neuron 1 Protein/metabolism , Valproic Acid/pharmacology
3.
Eur J Neurosci ; 45(1): 207-214, 2017 01.
Article in English | MEDLINE | ID: mdl-27519790

ABSTRACT

Dopamine transporter deficiency syndrome (DTDS) is a novel autosomal recessive disorder caused by mutations in the dopamine transporter (DAT), which leads to the partial or total loss of function of the protein. DTDS is a pharmacoresistant syndrome and very little is known about its neurobiology, in part due to the lack of relevant animal models. The objective of this study was to establish the first animal model for DTDS with strong construct validity, using Caenorhabditis elegans, and to investigate the in vivo role played by DTDS-related mutations found in human DAT (hDAT). We took advantage of a C. elegans knockout for the hDAT orthologue, cedat-1, to obtain genetically humanized animals bearing hDAT, in the wild type and in two mutated forms (399delG and 941C>T), in a null background. In C. elegans transgenic animals expressing the human wild-type form, we observed a rescue of the knockout phenotype, as assessed using two well-established paradigms, known to be regulated by the endogenous uptake of dopamine or 6-hydroxydopamine (6-OHDA) by DAT. The less severe mutation (941C>T) was able to partially rescue only one of the knockout phenotypes, whereas the 399delG mutation impaired DAT function in both phenotypic paradigms. Our in vivo phenotypic findings demonstrate a functional conservation between human and nematode DAT and validate previous in vitro indications of the loss of function of hDAT in carriers of DTDS-related mutations. Taken together, these observations establish C. elegans as a novel animal model for fast and inexpensive screening of hDAT mutations in functional and in vivo tests.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/deficiency , Humans , Mutation/genetics
4.
Commun Biol ; 7(1): 941, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097626

ABSTRACT

Extracellular vesicles (EVs) are membrane-enclosed bio-nanoparticles secreted by cells and naturally evolved to transport various bioactive molecules between cells and even organisms. These cellular objects are considered one of the most promising bio-nanovehicles for the delivery of native and exogenous molecular cargo. However, many challenges with state-of-the-art EV-based candidates as drug carriers still exist, including issues with scalability, batch-to-batch reproducibility, and cost-sustainability of the final therapeutic formulation. Microalgal extracellular vesicles, which we named nanoalgosomes, are naturally released by various microalgal species. Here, we evaluate the innate biological properties of nanoalgosomes derived from cultures of the marine microalgae Tetraselmis chuii, using an optimized manufacturing protocol. Our investigation of nanoalgosome biocompatibility in preclinical models includes toxicological analyses, using the invertebrate model organism Caenorhabditis elegans, hematological and immunological evaluations ex vivo and in mice. We evaluate nanoalgosome cellular uptake mechanisms in C. elegans at cellular and subcellular levels, and study their biodistribution in mice with accurate space-time resolution. Further examination highlights the antioxidant and anti-inflammatory bioactivities of nanoalgosomes. This holistic approach to nanoalgosome functional characterization demonstrates that they are biocompatible and innate bioactive effectors with unique bone tropism. These findings suggest that nanoalgosomes have significant potential for future therapeutic applications.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Extracellular Vesicles , Microalgae , Extracellular Vesicles/metabolism , Animals , Microalgae/metabolism , Mice , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Caenorhabditis elegans/metabolism , Biocompatible Materials/chemistry , Chlorophyta/metabolism , Bone and Bones/metabolism , Tropism
5.
ACS Chem Neurosci ; 14(21): 3894-3904, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37847529

ABSTRACT

According to the amyloid hypothesis, in the early phases of Alzheimer's disease (AD), small soluble prefibrillar aggregates of the amyloid ß-peptide (Aß) interact with neuronal membranes, causing neural impairment. Such highly reactive and toxic species form spontaneously and transiently in the amyloid building pathway. A therapeutic strategy consists of the recruitment of these intermediates, thus preventing aberrant interaction with membrane components (lipids and receptors), which in turn may trigger a cascade of cellular disequilibria. Milk αs1-Casein is an intrinsically disordered protein that is able to inhibit Aß amyloid aggregation in vitro, by sequestering transient species. In order to test αs1-Casein as an inhibitor for the treatment of AD, it needs to be delivered in the place of action. Here, we demonstrate the use of large unilamellar vesicles (LUVs) as suitable nanocarriers for αs1-Casein. Proteo-LUVs were prepared and characterized by different biophysical techniques, such as multiangle light scattering, atomic force imaging, and small-angle X-ray scattering; αs1-Casein loading was quantified by a fluorescence assay. We demonstrated on a C. elegans AD model the effectiveness of the proposed delivery strategy in vivo. Proteo-LUVs allow efficient administration of the protein, exerting a positive functional readout at very low doses while avoiding the intrinsic toxicity of αs1-Casein. Proteo-LUVs of αs1-Casein represent an effective proof of concept for the exploitation of partially disordered proteins as a therapeutic strategy in mild AD conditions.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Liposomes , Caseins/pharmacology , Caenorhabditis elegans , Amyloid/chemistry
6.
ACS Biomater Sci Eng ; 9(1): 303-317, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36490313

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have gained increasing interest in nanomedicine, but most of those that have entered the clinical trials have been withdrawn due to toxicity concerns. Therefore, there is an urgent need to design low-risk and biocompatible SPION formulations. In this work, we present an original safe-by-design nanoplatform made of silica nanoparticles loaded with SPIONs and decorated with polydopamine (SPIONs@SiO2-PDA) and the study of its biocompatibility performance by an ad hoc thorough in vitro to in vivo nanotoxicological methodology. The results indicate that the SPIONs@SiO2-PDA have excellent colloidal stability in serum-supplemented culture media, even after long-term (24 h) exposure, showing no cytotoxic or genotoxic effects in vitro and ex vivo. Physiological responses, evaluated in vivo using Caenorhabditis elegans as the animal model, showed no impact on fertility and embryonic viability, induction of an oxidative stress response, and a mild impact on animal locomotion. These tests indicate that the synergistic combination of the silica matrix and PDA coating we developed effectively protects the SPIONs, providing enhanced colloidal stability and excellent biocompatibility.


Subject(s)
Magnetite Nanoparticles , Animals , Magnetite Nanoparticles/toxicity , Silicon Dioxide/pharmacology , Magnetic Iron Oxide Nanoparticles , Indoles/pharmacology
7.
Food Sci Nutr ; 7(7): 2327-2335, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31367361

ABSTRACT

Kiwifruit is considered a functional food and a good source of nutraceuticals. Among the possible beneficial effects of kiwifruit species, a neuroprotective activity exerted in rats with learning and memory impairment induced by exposure to different chemicals was reported. We sought to investigate the neuroprotective activities of kiwifruit toward spinal muscular atrophy (SMA). To this purpose, we have used a recently developed Caenorhabditis elegans SMA model, displaying an age-dependent degeneration of motor neurons detected as locomotory defects, disappearance of fluorescent markers, and apoptotic death of targeted neurons. Although an anti-nematode activity is reported for kiwifruit, it has been verified that neither green (Actinidia deliciosa, cultivar Hayward) nor gold (Actinidia chinensis, cultivar Hort 16A) kiwifruit extracts cause detectable effects on wild-type C. elegans growth and life cycle. Conversely, green kiwifruit extracts have a clear effect on the C. elegans SMA model by partially rescuing the degeneration and death of motor neurons and the locomotion impairment. The gold species does not show the same effect. The components responsible for the neuroprotection are macromolecules with a molecular weight higher than 3 kDa, present in the green and not in the yellow kiwifruit. In conclusion, this is the first study reporting a protective activity of green kiwifruit toward motor neurons. In addition, we demonstrate that C. elegans is an animal model suitable to study the biological activities contained in kiwifruit. Therefore, this model can be exploited for future investigations aimed at identifying kiwifruit molecules with potential applications in the field of human health.

8.
Front Physiol ; 9: 576, 2018.
Article in English | MEDLINE | ID: mdl-29872404

ABSTRACT

The dopamine transporter (DAT) is a cell membrane protein whose main function is to reuptake the dopamine (DA) released in the synaptic cleft back into the dopaminergic neurons. Previous studies suggested that the activity of DAT is regulated by allosteric proteins such as Syntaxin-1A and is altered by drugs of abuse such as amphetamine (Amph). Because Caenorhabditis elegans expresses both DAT (DAT-1) and Syntaxin-1A (UNC-64), we used this model system to investigate the functional and behavioral effects caused by lack of expression of unc-64 in cultured dopaminergic neurons and in living animals. Using an inheritable RNA silencing technique, we were able to knockdown unc-64 specifically in the dopaminergic neurons. This cell-specific knockdown approach avoids the pleiotropic phenotypes caused by knockout mutations of unc-64 and ensures the transmission of dopaminergic specific unc-64 silencing to the progeny. We found that, similarly to dat-1 knockouts and dat-1 silenced lines, animals with reduced unc-64 expression in the dopaminergic neurons did not respond to Amph treatment when tested for locomotor behaviors. Our in vitro data demonstrated that in neuronal cultures derived from animals silenced for unc-64, the DA uptake was reduced by 30% when compared to controls, and this reduction was similar to that measured in neurons isolated from animals silenced for dat-1 (40%). Moreover, reduced expression of unc-64 in the dopaminergic neurons significantly reduced the DA release elicited by Amph. Because in C. elegans DAT-1 is the only protein capable to reuptake DA, these data show that reduced expression of unc-64 in the dopaminergic neurons decreases the capability of DAT in re-accumulating synaptic DA. Moreover, these results demonstrate that decreased expression of unc-64 in the dopaminergic neurons abrogates the locomotor behavior induced by Amph. Taken together these data suggest that Syntaxin-1A plays an important role in both functional and behavioral effects caused by Amph.

9.
Sci Rep ; 6: 29284, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27384057

ABSTRACT

Bacteriovorus eukaryotes such as nematodes are one of the major natural predators of bacteria. In their defense bacteria have evolved a number of strategies to avoid predation, including the production of deterrent or toxic metabolites, however little is known regarding the response of predators towards such bacterial defenses. Here we use the nematode C. elegans as a model to study a predators' behavioral response towards two toxic bacterial metabolites, tambjamine YP1 and violacein. We found that C. elegans displays an innate avoidance behavior towards tambjamine YP1, however requires previous exposure to violacein before learning to avoid this metabolite. The learned avoidance of violacein is specific, reversible, is mediated via the nematode olfactory apparatus (aversive olfactory learning) and is reduced in the absence of the neurotransmitter serotonin. These multiple strategies to evade bacterial toxic metabolites represent a valuable behavioral adaptation allowing bacteriovorus predators to distinguish between good and bad food sources, thus contributing to the understanding of microbial predator-prey interactions.


Subject(s)
Bacteria/metabolism , Caenorhabditis elegans/physiology , Indoles/metabolism , Predatory Behavior/physiology , Pyrroles/metabolism , Animals , Avoidance Learning/physiology , Nematoda/metabolism , Nematoda/physiology , Neurotransmitter Agents/metabolism , Smell/physiology
SELECTION OF CITATIONS
SEARCH DETAIL