ABSTRACT
Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.
Subject(s)
Intellectual Disability , Lymphopenia , Humans , NEDD8 Protein/genetics , NEDD8 Protein/metabolism , Signal Transduction/genetics , Intellectual Disability/genetics , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Lymphopenia/geneticsABSTRACT
The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.
Subject(s)
Drosophila Proteins , Nervous System Diseases , Adult , Animals , Humans , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mutation/genetics , RNA, MessengerABSTRACT
SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2, which encodes an evolutionarily conserved transcription factor. Despite the broad range of phenotypic manifestations and variable severity related to this syndrome, haploinsufficiency has been assumed to be the primary molecular explanation.In this study, we describe eight individuals with SATB2 variants that affect p.Gly392 (four women, age range 2-16 years; p.Gly392Arg, p.Gly392Glu and p.Gly392Val). Of these, individuals with p.Gly392Arg substitutions were found to have more severe neurodevelopmental phenotypes based on an established rubric scoring system when compared with individuals with p.Gly392Glu, p.Gly392Val and other previously reported causative SATB2 missense variants. Consistent with the observations at the phenotypic level, using human cell-based and model organism functional data, we documented that while all three described p.Gly392 variants affect the same residue and seem to all have a partial loss-of-function effect, some effects on SATB2 protein function appear to be variant-specific. Our results indicate that genotype-phenotype correlations in SAS are more complex than originally thought, and variant-specific genotype-phenotype correlations are needed.
Subject(s)
Genetic Association Studies , Matrix Attachment Region Binding Proteins , Mutation, Missense , Phenotype , Transcription Factors , Humans , Matrix Attachment Region Binding Proteins/genetics , Mutation, Missense/genetics , Female , Child , Adolescent , Male , Transcription Factors/genetics , Child, Preschool , Genetic Association Studies/methods , Haploinsufficiency/geneticsABSTRACT
Blue cone monochromacy (BCM) is an X-linked retinal disorder characterized by low vision, photoaversion, and poor color discrimination. BCM is due to the lack of long-wavelength-sensitive and middle-wavelength-sensitive cone photoreceptor function and caused by mutations in the OPN1LW/OPN1MW gene cluster on Xq28. Here, we investigated the prevalence and the landscape of submicroscopic structural variants (SVs) at single-base resolution in BCM patients. We found that about one-third (n = 73) of the 213 molecularly confirmed BCM families carry an SV, most commonly deletions restricted to the OPN1LW/OPN1MW gene cluster. The structure and precise breakpoints of the SVs were resolved in all but one of the 73 families. Twenty-two families-all from the United States-showed the same SV, and we confirmed a common ancestry of this mutation. In total, 42 distinct SVs were identified, including 40 previously unreported SVs, thereby quadrupling the number of precisely mapped SVs underlying BCM. Notably, there was no "region of overlap" among these SVs. However, 90% of SVs encompass the upstream locus control region, an essential enhancer element. Its minimal functional extent based on deletion mapping in patients was refined to 358 bp. Breakpoint analyses suggest diverse mechanisms underlying SV formation as well as in one case the gene conversion-based exchange of a 142-bp deletion between opsin genes. Using parsimonious assumptions, we reconstructed the composition and copy number of the OPN1LW/OPN1MW gene cluster prior to the mutation event and found evidence that large gene arrays may be predisposed to the occurrence of SVs at this locus.
Subject(s)
Color Vision Defects , Rod Opsins , Color Vision Defects/genetics , Gene Deletion , Humans , Multigene Family/genetics , Retinal Cone Photoreceptor Cells , Rod Opsins/geneticsABSTRACT
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
Subject(s)
Brain Diseases/genetics , Epilepsy/genetics , Fused Kidney/genetics , Intellectual Disability/genetics , Mutation, Missense , Nuclear Proteins/genetics , Osteochondrodysplasias/genetics , Adolescent , Amino Acid Sequence , Animals , Brain Diseases/etiology , Child , Child, Preschool , Epilepsy/complications , Evolution, Molecular , Female , Gene Frequency , Humans , Infant , Male , Mice , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/deficiency , Phenotype , Protein Stability , Syndrome , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics , Young Adult , Zebrafish/geneticsABSTRACT
The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.
Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genomics/methods , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Humans , Mutation/genetics , PhenotypeABSTRACT
SATB2-associated syndrome (SAS, glass syndrome, OMIM#612313) is a neurodevelopmental autosomal dominant disorder with frequent craniofacial abnormalities including palatal and dental anomalies. To assess the role of Satb2 in craniofacial development, we analyzed mutant mice at different stages of development. Here, we show that Satb2 is broadly expressed in early embryonic mouse development including the mesenchyme of the second and third arches. Satb2-/- mutant mice exhibit microglossia, a shortened lower jaw, smaller trigeminal ganglia, and larger thyroids. We correlate these findings with the detailed clinical phenotype of four individuals with SAS and remarkable craniofacial phenotypes with one requiring mandibular distraction in childhood. We conclude that the mouse and patient data presented support less well-described phenotypic aspects of SAS including mandibular morphology and thyroid anatomical/functional issues.
Subject(s)
Branchial Region , Matrix Attachment Region Binding Proteins , Phenotype , Transcription Factors , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Animals , Humans , Mice , Transcription Factors/genetics , Branchial Region/abnormalities , Branchial Region/pathology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Female , Male , Mice, Knockout , Syndrome , Mandible/abnormalities , Mandible/pathologyABSTRACT
Alterations in SATB2 result in SATB2-associated syndrome (SAS; Glass syndrome, OMIM 612313), an autosomal dominant multisystemic disorder predominantly characterized by developmental delay, craniofacial anomalies, and growth retardation. The bone phenotype of SAS has been less explored until recently and includes a variety of skeletal deformities, increased risk of low bone mineral density (BMD) with a propensity to fractures, and other biochemical abnormalities that suggest elevated bone turnover. We present the results of ongoing surveillance of bone health from 32 individuals (47% females, 3-18 years) with molecularly-confirmed SAS evaluated at a multidisciplinary clinic. Five individuals (5/32, 16%) were documented to have BMD Z-scores by DXA scans of -2.0 SD or lower and 7 more (7/32, 22%) had Z-scores between -1 and - 2 SD at the lumbar spine or the total hip. Alkaline phosphatase levels were found to be elevated in 19 individuals (19/30, 63%) and determined to correspond to bone-specific alkaline phosphatase elevations when measured (11/11, 100%). C-telopeptide levels were found to be elevated when adjusted by age and gender in 6 individuals (6/14, 43%). Additionally, the two individuals who underwent bone cross-sectional geometry evaluation by peripheral quantitative computed tomography were documented to have low cortical bone density for age and sex despite concurrent DXA scans that did not have this level of decreased density. While we could not identify particular biochemical abnormalities that predicted low BMD, the frequent elevations in markers of bone formation and resorption further confirmed the increased bone turnover in SAS. Based on our results and other recently published studies, we propose surveillance guidelines for the skeletal phenotype of SAS.
Subject(s)
Bone Diseases, Metabolic , Matrix Attachment Region Binding Proteins , Female , Humans , Male , Bone Density/genetics , Alkaline Phosphatase , Prospective Studies , Bone and Bones/diagnostic imaging , Absorptiometry, Photon/methods , Syndrome , Transcription Factors/genetics , Matrix Attachment Region Binding Proteins/geneticsABSTRACT
The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).
Subject(s)
Caenorhabditis elegans Proteins , Intellectual Disability , Animals , Humans , Corpus Callosum/pathology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Intellectual Disability/genetics , Phenotype , Ligases/genetics , Ubiquitins/genetics , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/pathology , Ubiquitin-Protein Ligases/genetics , Adaptor Proteins, Signal Transducing/genetics , Guanine Nucleotide Exchange Factors/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolismABSTRACT
Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autistic Disorder/etiology , Intellectual Disability/etiology , Mutation, Missense , Nuclear Proteins/genetics , Adolescent , Adult , Amino Acid Sequence , Autistic Disorder/metabolism , Autistic Disorder/pathology , Child , Child, Preschool , Female , Genetic Association Studies , Humans , Infant , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Prognosis , Sequence Homology , Syndrome , Young AdultABSTRACT
Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.
Subject(s)
Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Cohort Studies , Female , Humans , Male , PregnancyABSTRACT
PURPOSE: This study aimed to develop objective diagnostic criteria for early onset Marfan syndrome (eoMFS) to facilitate early diagnosis and timely interventions. METHODS: On the basis of an extensive literature review and the responses from a survey distributed among providers with expertise in the diagnosis and management of eoMFS, we developed an age-based, diagnostic scoring system encompassing 10 features common to eoMFS (9 clinical + 1 laboratory) and divided them into cardiac, systemic, and FBN1 (on the basis of the location of the pathogenic FBN1 variant) scores. RESULTS: In total, 77 individuals with eoMFS (13 newly reported) and 49 individuals diagnosed with classical Marfan syndrome during early childhood were used to validate the criteria. Median cardiac (8 vs 0, P < .001), systemic (11 vs 3, P < .001), FBN1 (5 vs 0, P < .001), and total (23 vs 4, P < .001) scores were significantly higher in individuals with eoMFS than in those without. A proposed clinical score (cardiac + systemic) cutoff of ≥14 points showed excellent sensitivity (100%), specificity (92%), and reliability (correctly classified = 94%). CONCLUSION: Distinct from classical Marfan syndrome in phenotype and morbidity, eoMFS can be diagnosed clinically using an objective scoring system encompassing the typical physical features and cardiac disease manifestations. Although genetic testing can be suggestive of eoMFS, genetic testing alone is insufficient for diagnosis.
Subject(s)
Infant, Newborn, Diseases , Marfan Syndrome , Child, Preschool , Fibrillin-1/genetics , Fibrillins/genetics , Humans , Infant, Newborn , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Mutation , Phenotype , Reproducibility of ResultsABSTRACT
SATB2-associated syndrome (SAS) is an autosomal dominant multisystemic disorder caused by alterations in the SATB2 gene. In addition to a predominant neurodevelopmental phenotype, individuals with SAS often present with feeding difficulties and growth retardation that persist past infancy. In this study, we present growth and measurement data from 211 individuals (53.6% male, 46.4% female) with SAS due to different molecular mechanisms. To delineate growth in this population, we constructed SAS-specific growth charts by sex from birth to 10 years of age. Smoothed SAS percentiles were superimposed with normative percentiles from WHO (birth to <24 months) and CDC (24 months to 10 years) growth charts. Individuals with SAS tend to display slower postnatal growth with 22.2% (32/144), 19.0% (26/137), and 21.6% having at least one weight, height, or weight-for-length /body mass index (BMI) measurement below -2 standard deviations, respectively. The SAS 50th centile BMI was consistently below the normative data 50th centile and negative mean Z-scores were seen across almost all age groups analyzed for both genders. Individuals with chromosomal abnormalities displayed significantly lower weight for age Z-score, height for age Z-scores, occipitofrontal head circumference for age Z-scores, and BMI for age Z-scores compared to either missense or null variants.
Subject(s)
Growth Charts , Matrix Attachment Region Binding Proteins , Body Mass Index , Body Weight , Female , Humans , Male , Matrix Attachment Region Binding Proteins/genetics , Syndrome , Transcription Factors/geneticsABSTRACT
Primary ciliopathies are heterogenous disorders resulting from perturbations in primary cilia form and/or function. Primary cilia are cellular organelles which mediate key signaling pathways during development, such as the sonic hedgehog (SHH) pathway which is required for neuroepithelium and central nervous system development. Joubert syndrome is a primary ciliopathy characterized by cerebellar/brain stem malformation, hypotonia, and developmental delays. At least 35 genes are associated with Joubert syndrome, including the gene KIAA0753, which is part of a complex required for primary ciliogenesis. The phenotypic spectrum associated with biallelic pathogenic variants in KIAA0753 is broad and not well-characterized. We describe four individuals with biallelic pathogenic KIAA0753 variants, including five novel variants. We report in vitro results assessing the function of each variant indicating that mutant proteins are not fully competent to promote primary ciliogenesis. Ablation of KIAA0753 in vitro blocks primary ciliogenesis and SHH pathway activity. Correspondingly, KIAA0753 patient fibroblasts have a deficit in primary ciliation and improper SHH and WNT signaling, with a particularly blunted response to SHH pathway stimulation. Our work expands the phenotypic spectrum of KIAA0753 ciliopathies and demonstrates the utility of patient-focused functional assays for proving causality of genetic variants.
Subject(s)
Abnormalities, Multiple , Ciliopathies , Eye Abnormalities , Kidney Diseases, Cystic , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Cerebellum/abnormalities , Cilia/genetics , Cilia/pathology , Ciliopathies/genetics , Ciliopathies/pathology , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Microtubule-Associated Proteins , Retina/abnormalitiesABSTRACT
Costello syndrome (CS) is an autosomal dominant disorder caused by pathogenic variants in HRAS. Craniosynostosis is a known feature of other RASopathies (Noonan and cardiofaciocutaneous syndromes) but not CS. We describe four individuals with CS and craniosynostosis and present a summary of all previously reported individuals with craniosynostosis and RASopathy.
Subject(s)
Costello Syndrome , Craniosynostoses , Ectodermal Dysplasia , Noonan Syndrome , Costello Syndrome/diagnosis , Costello Syndrome/genetics , Craniosynostoses/diagnosis , Craniosynostoses/genetics , Facies , Failure to Thrive , HumansABSTRACT
PURPOSE: To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. METHODS: Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19G28R and CDK19Y32H. RESULTS: We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). CONCLUSION: CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.
Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Animals , Cyclin-Dependent Kinases/genetics , Gain of Function Mutation , Humans , Infant , Mutation, Missense , Zebrafish/geneticsABSTRACT
PURPOSE: JARID2, located on chromosome 6p22.3, is a regulator of histone methyltransferase complexes that is expressed in human neurons. So far, 13 individuals sharing clinical features including intellectual disability (ID) were reported with de novo heterozygous deletions in 6p22-p24 encompassing the full length JARID2 gene (OMIM 601594). However, all published individuals to date have a deletion of at least one other adjoining gene, making it difficult to determine if JARID2 is the critical gene responsible for the shared features. We aim to confirm JARID2 as a human disease gene and further elucidate the associated clinical phenotype. METHODS: Chromosome microarray analysis, exome sequencing, and an online matching platform (GeneMatcher) were used to identify individuals with single-nucleotide variants or deletions involving JARID2. RESULTS: We report 16 individuals in 15 families with a deletion or single-nucleotide variant in JARID2. Several of these variants are likely to result in haploinsufficiency due to nonsense-mediated messenger RNA (mRNA) decay. All individuals have developmental delay and/or ID and share some overlapping clinical characteristics such as facial features with those who have larger deletions involving JARID2. CONCLUSION: We report that JARID2 haploinsufficiency leads to a clinically distinct neurodevelopmental syndrome, thus establishing gene-disease validity for the purpose of diagnostic reporting.
Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Haploinsufficiency/genetics , Heterozygote , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Polycomb Repressive Complex 2/genetics , Syndrome , Exome SequencingABSTRACT
SATB2-Associated syndrome (SAS) is an autosomal dominant, multisystemic, neurodevelopmental disorder due to alterations in SATB2 at 2q33.1. A limited number of individuals with 2q33.1 contiguous deletions encompassing SATB2 (ΔSAS) have been described in the literature. We describe 17 additional individuals with ΔSAS, review the phenotype of 33 previously published individuals with 2q33.1 deletions (n = 50, mean age = 8.5 ± 7.8 years), and provide a comprehensive comparison to individuals with other molecular mechanisms that result in SAS (non-ΔSAS). Individuals in the ΔSAS group were often underweight for age (20/41 = 49%) with a progressive decline in weight (95% CI = -2.3 to -1.1, p < 0.0001) and height (95% CI = -2.3 to -1.0, p < 0.0001) Z-score means from birth to last available measurement. ΔSAS individuals were often noted to have a broad spectrum of facial dysmorphism. A composite image of ΔSAS individuals generated by automated image analysis was distinct as compared to matched controls and non-ΔSAS individuals. We also present additional genotype-phenotype correlations for individuals in the ΔSAS group such as an increased risk for aortic root/ascending aorta dilation and primary pulmonary hypertension for those individuals with contiguous gene deletions that include COL3A1/COL5A2 and BMPR2, respectively. Based on these findings, we provide additional care recommendations for individuals with ΔSAS variants.
Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 2/genetics , Matrix Attachment Region Binding Proteins/deficiency , Transcription Factors/deficiency , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 2/ultrastructure , Collagen Type III/deficiency , Collagen Type III/genetics , Collagen Type V/deficiency , Collagen Type V/genetics , Dwarfism/genetics , Face/abnormalities , Female , Genetic Association Studies , Gestational Age , Humans , Hypertension, Pulmonary/genetics , Infant , Male , Matrix Attachment Region Binding Proteins/genetics , Microcephaly/genetics , Phenotype , Thinness/genetics , Transcription Factors/geneticsABSTRACT
The goal of this study was to investigate the medical, communication, activities of daily living (ADLs), and mental health concerns affecting adolescents and adults with SATB2-associated syndrome (SAS). A comprehensive questionnaire was administered to the caregivers of 49 individuals 12 years or older with SAS (mean age was 19.4 years, range 12-37 years). For all individuals, medical records, including laboratory results, were reviewed. Most individuals required some degree of assistance for ADLs and none of the adults were able to live independently. Health status was qualified as excellent or very good in 61% of individuals. The most common medical problems were dental anomalies, with a significantly higher frequency of hypotonia and gastroesophageal reflux in younger individuals. Medical and surgical interventions were often required. Sixty-nine percent (n = 33) of individuals spoke 10 or fewer words. Autism (41%), anxiety (37%), and attention deficit disorder (37%) were common with one third of individuals receiving medical treatments for these diagnoses. While medical and developmental problems in individuals with SAS were similar to those previously reported, many of these are persistent into adolescence and adulthood. This study provides better guidance for the challenges facing adults with SAS and their families.
Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Matrix Attachment Region Binding Proteins/genetics , Phenotype , Transcription Factors/genetics , Adolescent , Adult , Child , Female , Humans , Male , Registries , Syndrome , Young AdultABSTRACT
MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.