ABSTRACT
Gastroenteritis is among the leading causes of mortality globally in infants and young children, with rotavirus (RV) causing ~258 million episodes of diarrhea and ~128,000 deaths annually in infants and children. RV-induced mechanisms that result in diarrhea are not completely understood, but malabsorption is a contributing factor. RV alters cellular lipid metabolism by inducing lipid droplet (LD) formation as a platform for replication factories named viroplasms. A link between LD formation and gastroenteritis has not been identified. We found that diacylglycerol O-acyltransferase 1 (DGAT1), the terminal step in triacylglycerol synthesis required for LD biogenesis, is degraded in RV-infected cells by a proteasome-mediated mechanism. RV-infected DGAT1-silenced cells show earlier and increased numbers of LD-associated viroplasms per cell that translate into a fourfold-to-fivefold increase in viral yield (P < 0.05). Interestingly, DGAT1 deficiency in children is associated with diarrhea due to altered trafficking of key ion transporters to the apical brush border of enterocytes. Confocal microscopy and immunoblot analyses of RV-infected cells and DGAT1-/- human intestinal enteroids (HIEs) show a decrease in expression of nutrient transporters, ion transporters, tight junctional proteins, and cytoskeletal proteins. Increased phospho-eIF2α (eukaryotic initiation factor 2 alpha) in DGAT1-/- HIEs, and RV-infected cells, indicates a mechanism for malabsorptive diarrhea, namely inhibition of translation of cellular proteins critical for nutrient digestion and intestinal absorption. Our study elucidates a pathophysiological mechanism of RV-induced DGAT1 deficiency by protein degradation that mediates malabsorptive diarrhea, as well as a role for lipid metabolism, in the pathogenesis of gastroenteritis.
Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus , Child , Infant , Humans , Child, Preschool , Rotavirus/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Virus Replication , Diarrhea , Rotavirus Infections/geneticsABSTRACT
Human sapoviruses (HuSaVs), like human noroviruses (HuNoV), belong to the Caliciviridae family and cause acute gastroenteritis in humans. Since their discovery in 1976, numerous attempts to grow HuSaVs in vitro were unsuccessful until 2020, when these viruses were reported to replicate in a duodenal cancer cell-derived line. Physiological cellular models allowing viral replication are essential to investigate HuSaV biology and replication mechanisms such as genetic susceptibility, restriction factors, and immune responses to infection. In this study, we demonstrate replication of two HuSaV strains in human intestinal enteroids (HIEs) known to support the replication of HuNoV and other human enteric viruses. HuSaVs replicated in differentiated HIEs originating from jejunum, duodenum and ileum, but not from the colon, and bile acids were required. Between 2h and 3 to 6 days postinfection, viral RNA levels increased up from 0.5 to 1.8 log10-fold. Importantly, HuSaVs were able to replicate in HIEs independent of their secretor status and histo-blood group antigen expression. The HIE model supports HuSaV replication and allows a better understanding of host-pathogen mechanisms such as cellular tropism and mechanisms of viral replication. IMPORTANCE Human sapoviruses (HuSaVs) are a frequent but overlooked cause of acute gastroenteritis, especially in children. Little is known about this pathogen, whose successful in vitro cultivation was reported only recently, in a cancer cell-derived line. Here, we assessed the replication of HuSaV in human intestinal enteroids (HIEs), which are nontransformed cultures originally derived from human intestinal stem cells that can be grown in vitro and are known to allow the replication of other enteric viruses. Successful infection of HIEs with two strains belonging to different genotypes of the virus allowed discovery that the tropism of these HuSaVs is restricted to the small intestine, does not occur in the colon, and replication requires bile acid but is independent of the expression of histo-blood group antigens. Thus, HIEs represent a physiologically relevant model to further investigate HuSaV biology and a suitable platform for the future development of vaccines and antivirals.
Subject(s)
Caliciviridae Infections , Culture Techniques , Sapovirus , Virus Replication , Humans , Bile Acids and Salts/pharmacology , Caliciviridae Infections/virology , Gastroenteritis/virology , Intestine, Small/virology , Sapovirus/growth & development , Sapovirus/immunology , Virus Replication/drug effects , Virus Replication/physiology , Culture Techniques/methods , Host Microbial Interactions , Culture Media/chemistry , Cell Line, Tumor , Cell DifferentiationABSTRACT
Human noroviruses (HuNoVs) are the leading cause of viral gastroenteritis worldwide; yet currently, no vaccines or FDA-approved antiviral drugs are available to counter these pathogens. To understand HuNoV biology and the epithelial response to infection, we performed transcriptomic analyses, RT-qPCR, CRISPR-Cas9 modification of human intestinal enteroid (HIE) cultures, and functional studies with two virus strains (a pandemic GII.4 and a bile acid-dependent GII.3 strain). We identified a predominant type III interferon (IFN)-mediated innate response to HuNoV infection. Replication of both strains is sensitive to exogenous addition of IFNs, suggesting the potential of IFNs as therapeutics. To obtain insight into IFN pathway genes that play a role in the antiviral response to HuNoVs, we developed knockout (KO) HIE lines for IFN alpha and lambda receptors and the signaling molecules, MAVS, STAT1, and STAT2 An unexpected differential response of enhanced replication and virus spread was observed for GII.3, but not the globally dominant GII.4 HuNoV in STAT1-knockout HIEs compared to parental HIEs. These results indicate cellular IFN responses restrict GII.3 but not GII.4 replication. The strain-specific sensitivities of innate responses against HuNoV replication provide one explanation for why GII.4 infections are more widespread and highlight strain specificity as an important factor in HuNoV biology. Genetically modified HIEs for innate immune genes are useful tools for studying immune responses to viral or microbial pathogens.
Subject(s)
Caliciviridae Infections , Host-Pathogen Interactions/immunology , Interferons , Intestines , Norovirus , CRISPR-Cas Systems , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Humans , Interferons/genetics , Interferons/metabolism , Intestines/immunology , Intestines/virology , Models, Biological , Norovirus/genetics , Norovirus/immunology , Norovirus/pathogenicity , Organoids/immunology , Organoids/virology , Sequence Analysis, RNA , Transcriptome/genetics , Virus ReplicationABSTRACT
Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g., GII.3) replicate only in the presence of bile. Heat- and trypsin-treatment of bile did not reduce GII.3 replication, indicating a nonproteinaceous component in bile functions as an active factor. Here we show that bile acids (BAs) are critical for GII.3 replication and replication correlates with BA hydrophobicity. Using the highly effective BA, glycochenodeoxycholic acid (GCDCA), we show BAs act during the early stage of infection, BA-dependent replication in HIEs is not mediated by detergent effects or classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling but involves another G protein-coupled receptor, sphingosine-1-phosphate receptor 2, and BA treatment of HIEs increases particle uptake. We also demonstrate that GCDCA induces multiple cellular responses that promote GII.3 replication in HIEs, including enhancement of 1) endosomal uptake, 2) endosomal acidification and subsequent activity of endosomal/lysosomal enzyme acid sphingomyelinase (ASM), and 3) ceramide levels on the apical membrane. Inhibitors of endosomal acidification or ASM reduce GII.3 infection and exogenous addition of ceramide alone permits infection. Furthermore, inhibition of lysosomal exocytosis of ASM, which is required for ceramide production at the apical surface, decreases GII.3 infection. Together, our results support a model where GII.3 exploits rapid BA-mediated cellular endolysosomal dynamic changes and cellular ceramide to enter and replicate in jejunal HIEs.
Subject(s)
Bile Acids and Salts/metabolism , Ceramides/metabolism , Intestines/virology , Norovirus/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects , Bile Acids and Salts/pharmacology , Ceramides/pharmacology , Glycochenodeoxycholic Acid , Humans , Receptors, G-Protein-Coupled , Sphingomyelin Phosphodiesterase/metabolism , Sphingosine-1-Phosphate ReceptorsABSTRACT
Cryptosporidium is a leading cause of diarrhea and death in young children and untreated AIDS patients and causes waterborne outbreaks. Pathogenic mechanisms underlying diarrhea and intestinal dysfunction are poorly understood. We previously developed stem-cell derived human intestinal enteroid (HIE) models for Cryptosporidium parvum which we used in this study to investigate the course of infection and its effect on intestinal epithelial integrity. By immunofluorescence and confocal microscopy, there was robust infection of undifferentiated and differentiated HIEs in two and three-dimensional (2D, 3D) models. Infection of differentiated HIEs in the 2D model was greater than that of undifferentiated HIEs but lasted only for 3 days, whereas infection persisted for 21 days and resulted in completion of the life cycle in undifferentiated HIEs. Infection of undifferentiated HIE monolayers suggest that C. parvum infects LGR5+ stem cells. Transepithelial electrical resistance measurement of HIEs in the 2D model revealed that infection resulted in decreased epithelial integrity which persisted in differentiated HIEs but recovered in undifferentiated HIEs. Compromised epithelial integrity was reflected in disorganization of the tight and adherens junctions as visualized using the markers ZO-1 and E-cadherin, respectively. Quantitation using the image analysis tools Tight Junction Organizational Rate and Intercellular Junction Organization Quantification, measurement of monolayer height, and RNA transcripts of both proteins by quantitative reverse transcription PCR confirmed that disruption persisted in differentiated HIEs but recovered in undifferentiated HIEs. These models, which more accurately recapitulate human infection, will be useful tools to dissect pathogenic mechanisms underlying diarrhea and intestinal dysfunction in cryptosporidiosis.
Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Child , Humans , Child, Preschool , Cryptosporidiosis/genetics , Cryptosporidium parvum/physiology , Intestines , Diarrhea/metabolism , Intestinal Mucosa/metabolismABSTRACT
Little data on the persistence of human norovirus infectivity are available to predict its transmissibility. Using human intestinal enteroids, we demonstrate that 2 human norovirus strains can remain infectious for several weeks in seawater. Such experiments can improve understanding of factors associated with norovirus survival in coastal waters and shellfish.
Subject(s)
Caliciviridae Infections , Communicable Diseases , Norovirus , Humans , Norovirus/genetics , Seawater , ShellfishABSTRACT
Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.
Subject(s)
Cell Culture Techniques/methods , Colon/metabolism , Culture Media/pharmacology , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Organoids/metabolism , Transcriptome/drug effects , Calcitriol/pharmacology , Collagen/metabolism , Collagen/pharmacology , Crohn Disease/metabolism , Crohn Disease/pathology , Culture Media/chemistry , Drug Combinations , Escherichia coli , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Humans , Laminin/metabolism , Laminin/pharmacology , Organoids/virology , Proteoglycans/metabolism , Proteoglycans/pharmacology , RNA-Seq/methods , Transcriptome/genetics , Virus Diseases/metabolism , Virus Diseases/virology , VirusesABSTRACT
BACKGROUND: The role of enteropathogenic Escherichia coli (EPEC) as a cause of diarrhea in cancer and immunocompromised patients is controversial. Quantitation of fecal bacterial loads has been proposed as a method to differentiate colonized from truly infected patients. METHODS: We studied 77 adult cancer and immunosuppressed patients with diarrhea and EPEC identified in stools by FilmArray, 25 patients with pathogen-negative diarrhea, and 21 healthy adults without diarrhea. Stools were studied by quantitative polymerase chain reaction (qRT-PCR) for EPEC genes eaeA and lifA/efa-1 and strains characterized for virulence factors and adherence to human intestinal enteroids (HIEs). RESULTS: Patients with EPEC were more likely to have community-acquired diarrhea (odds ratio, 3.82 [95% confidence interval, 1.5-10.0]; P = .008) compared with pathogen-negative cases. Although EPEC was identified in 3 of 21 (14%) healthy subjects by qPCR, the bacterial burden was low compared to patients with diarrhea (≤55 vs median, 6 Ć 104 bacteria/mg stool; P < .001). Among EPEC patients, the bacterial burden was higher in those who were immunosuppressed (median, 6.7 Ć 103 vs 55 bacteria/mg; P < .001) and those with fecal lifA/ifa-1 (median, 5 Ć 104 vs 120 bacteria/mg; P = .015). Response to antimicrobial therapy was seen in 44 of 48 (92%) patients with EPEC as the sole pathogen. Antimicrobial resistance was common and strains exhibited distinct patterns of adherence with variable cytotoxicity when studied in HIEs. Cancer care was delayed in 13% of patients. CONCLUSIONS: Immunosuppressed cancer patients with EPEC-associated diarrhea carry high burden of EPEC with strains that are resistant to antibiotics, exhibit novel patterns of adherence when studied in HIEs, and interfere with cancer care.
Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Neoplasms , Adult , Diarrhea , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Feces , Humans , Immunocompromised Host , Neoplasms/complicationsABSTRACT
The use of human tissue stem cell-derived organoids has advanced our knowledge of human physiological and pathophysiological processes that are unable to be studied using other model systems. Increased understanding of human epithelial tissues including intestine, stomach, liver, pancreas, lung, and brain have been achieved using organoids. However, it is not yet clear whether these cultures recapitulate in vivo organ-to-organ signaling or communication. In this work, we demonstrate that mature stem cell-derived intestinal and liver organoid cultures each express functional molecules that modulate bile acid uptake and recycling. These organoid cultures can be physically coupled in a Transwell system and display increased secretion of fibroblast growth factor 19 (FGF19) (intestine) and downregulation of P450 enzyme cholesterol 7 α-hydroxylase (CYP7A) (liver) in response to apical exposure of the intestine to bile acids. This work establishes that organoid cultures can be used to study and therapeutically modulate interorgan interactions and advance the development of personalized approaches to medical care.NEW & NOTEWORTHY Interorgan signaling is a critical feature of human biology and physiology, yet has remained difficult to study due to the lack of in vitro models. Here, we demonstrate that physical coupling of ex vivo human intestine and liver epithelial organoid cultures recapitulates in vivo interorgan bile acid signaling. These results suggest that coupling of multiple organoid systems provides new models to investigate interorgan communication and advances our knowledge of human physiological and pathophysiological processes.
Subject(s)
Cell Differentiation/physiology , Intestines/cytology , Organoids/cytology , Stem Cells/cytology , Cells, Cultured , Enterohepatic Circulation/physiology , Humans , Liver/metabolism , Stomach/cytologyABSTRACT
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/Ć) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.
Subject(s)
Interferons/genetics , Intestine, Small/immunology , Rotavirus Infections/genetics , Animals , Cell Line , Chlorocebus aethiops , Humans , Immunity, Innate , Interferons/immunology , Rotavirus/physiology , Rotavirus Infections/immunology , Sequence Analysis, RNA , Virus ReplicationABSTRACT
BACKGROUND: Lack of a model that mirrors Helicobacter pylori-induced gastric mucosal inflammation has hampered investigation of early host-bacterial interactions. We used an ex vivo model of human stomach, gastric epithelial organoid monolayers (gastroid monolayers) to investigate interactions of HĀ pylori infection and the apical junctional complex and interleukin-8 (IL-8) expression. METHOD: Morphology of human antral mucosal gastroid monolayers was evaluated using histology, immunohistochemical (IHC) staining, and transmission electron microscopy (TEM). Functional and gross changes in the apical junctional complexes were assessed using transepithelial electrical resistance (TEER), cytotoxicity assays, and confocal laser scanning microscopy. IL-8 expression was evaluated by real-time quantitative PCR and ELISA. RESULTS: When evaluated by IHC and TEM, the morphology of gastroid monolayers closely resembled in vivo human stomach. Following inoculation of HĀ pylori, TEER transiently declined (up to 51%) in an HĀ pylori density-dependent manner. TEER recovered by 48Ā hours post-infection and remained normal despite continued presence and replication of HĀ pylori. Confocal scanning microscopy showed minimal disruption of zonula occludens-1 or E-cadherin structure. IL-8 production was unchanged by infection with either CagA-positive or CagA-negative HĀ pylori and JNK and MEK inhibitors did not suppress IL-8 production, whereas p38 and IKK inhibitor significantly did. CONCLUSION: Human gastroid monolayers provide a model for experimental HĀ pylori infection more consistent with in vivo human infections than seen with typical gastric epithelial cell lines. This ex vivo system should lead to better understanding of HĀ pylori host-pathogen interactions.
Subject(s)
Gastritis/pathology , Helicobacter Infections/pathology , Helicobacter pylori/physiology , Host-Pathogen Interactions , Interleukin-8/metabolism , Cell Line, Tumor , Cells, Cultured , Epithelial Cells/microbiology , Epithelial Cells/pathology , Gastritis/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/genetics , Humans , Inflammation/microbiology , Mutation , Stomach/microbiology , Stomach/pathology , Tight Junctions/metabolism , Tight Junctions/pathologyABSTRACT
Human noroviruses are a leading cause of epidemic and endemic acute gastroenteritis worldwide and a leading cause of foodborne illness in the United States. Recently, human intestinal enteroids (HIEs) derived from human small intestinal tissue have been shown to support human norovirus replication. We implemented the HIE system in our laboratory and tested the effect of chlorine and alcohols on human norovirus infectivity. Successful replication was observed for 6 norovirus GII genotypes and was dependent on viral load and genotype of the inoculum. GII.4 viruses had higher replication levels than other genotypes. Regardless of concentration or exposure time, alcohols slightly reduced, but did not completely inactivate, human norovirus. In contrast, complete inactivation of the 3 GII.4 viruses occurred at concentrations as low as 50 ppm of chlorine. Taken together, our data confirm the successful replication of human noroviruses in HIEs and their utility as tools to study norovirus inactivation strategies.
Subject(s)
Jejunum/cytology , Norovirus/physiology , Virus Cultivation , Virus Inactivation/drug effects , Virus Replication/physiology , Alcohols/pharmacology , Cell Line , Chlorine/pharmacology , Humans , Norovirus/drug effects , Virus Replication/drug effectsABSTRACT
The translocation of bacteria across the intestinal epithelium of immunocompromised patients can lead to bacteremia and life-threatening sepsis. Extraintestinal pathogenic Escherichia coli (ExPEC), so named because this pathotype infects tissues distal to the intestinal tract, is a frequent cause of such infections, is often multidrug resistant, and chronically colonizes a sizable portion of the healthy population. Although several virulence factors and their roles in pathogenesis are well described for ExPEC strains that cause urinary tract infections and meningitis, they have not been linked to translocation through intestinal barriers, a fundamentally distant yet important clinical phenomenon. Using untransformed ex situ human intestinal enteroids and transformed Caco-2 cells, we report that ExPEC strain CP9 binds to and invades the intestinal epithelium. ExPEC harboring a deletion of the gene encoding the mannose-binding type 1 pilus tip protein FimH demonstrated reduced binding and invasion compared to strains lacking known E. coli virulence factors. Furthermore, in a murine model of chemotherapy-induced translocation, ExPEC lacking fimH colonized at levels comparable to that of the wild type but demonstrated a statistically significant reduction in translocation to the kidneys, spleen, and lungs. Collectively, this study indicates that FimH is important for ExPEC translocation, suggesting that the type 1 pilus is a therapeutic target for the prevention of this process. Our study also highlights the use of human intestinal enteroids in the study of enteric diseases.
Subject(s)
Adhesins, Escherichia coli/genetics , Bacterial Translocation/genetics , Epithelial Cells/microbiology , Escherichia coli Infections/microbiology , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Fimbriae Proteins/genetics , Fimbriae, Bacterial/physiology , Animals , Caco-2 Cells , Epithelial Cells/pathology , Escherichia coli Infections/pathology , Extraintestinal Pathogenic Escherichia coli/physiology , Female , Fimbriae Proteins/deficiency , Gene Expression , Humans , Jejunum/microbiology , Jejunum/pathology , Kidney/microbiology , Kidney/pathology , Lung/microbiology , Lung/pathology , Male , Mice, Inbred BALB C , Primary Cell Culture , Spheroids, Cellular/microbiology , Spheroids, Cellular/pathology , Spleen/microbiology , Spleen/pathology , VirulenceABSTRACT
UNLABELLED: Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE: Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures.
Subject(s)
Intestine, Small/virology , Models, Theoretical , Organ Culture Techniques/methods , Rotavirus Infections/pathology , Rotavirus Infections/virology , Rotavirus/physiology , Virus Replication , Humans , Intestine, Small/physiologyABSTRACT
X-linked dyskeratosis congenita (X-DC) is caused by mutations in the housekeeping nucleolar protein dyskerin. Amino acid changes associated with X-DC are remarkably heterogeneous. Peripheral mononuclear blood cells and fibroblasts isolated from X-DC patients harbor lower steady-state telomerase RNA (TER) levels and shorter telomeres than healthy age-matched controls. Previously, we showed that retroviral expression of recombinant TER, together with expression of recombinant telomerase reverse transcriptase, restored telomere maintenance and proliferative capacity in X-DC patient cells. Using rare X-DC isoforms (ΔL37 and A386T dyskerin), we showed that telomere maintenance defects observed in X-DC are solely due to decreased steady-state levels of TER. Disease-associated reductions in steady-state TER levels cause deficiencies in telomere maintenance. Here, we confirm these findings in other primary X-DC patient cell lines coding for the most common (A353V dyskerin) and more clinically severe (K314R and A353V dyskerin) X-DC isoforms. Using cell lines derived from these patients, we also examined the steady-state levels of other hinge-ACA motif RNAs and did not find differences in their in vivo accumulations. We show, for the first time, that purified telomerase holoenzyme complexes from different X-DC cells have normal catalytic activity. Our data confirm that dyskerin promotes TER stability in vivo, endorsing the development of TER supplementation strategies for the treatment of X-DC.
Subject(s)
Cell Cycle Proteins/genetics , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/metabolism , Nuclear Proteins/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Biocatalysis , Cell Cycle Proteins/metabolism , Cell Line , Dyskeratosis Congenita/enzymology , Dyskeratosis Congenita/pathology , Fibroblasts/enzymology , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression , Genotype , Holoenzymes/isolation & purification , Holoenzymes/metabolism , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Nuclear Proteins/metabolism , Nucleotide Motifs , RNA/genetics , RNA/metabolism , RNA Stability , Telomerase/genetics , Telomerase/isolation & purification , Telomere HomeostasisABSTRACT
Single cell transcriptomics has revolutionized our understanding of the cell biology of the human body. State-of-the-art human small intestinal organoid cultures provide ex vivo model systems that bridge the gap between animal models and clinical studies. The application of single cell transcriptomics to human intestinal organoid (HIO) models is revealing previously unrecognized cell biology, biochemistry, and physiology of the GI tract. The advanced single cell transcriptomics platforms use microfluidic partitioning and barcoding to generate cDNA libraries. These barcoded cDNAs can be easily sequenced by next generation sequencing platforms and used by various visualization tools to generate maps. Here, we describe methods to culture and differentiate human small intestinal HIOs in different formats and procedures for isolating viable cells from these formats that are suitable for use in single-cell transcriptional profiling platforms. These protocols and procedures facilitate the use of small intestinal HIOs to obtain an increased understanding of the cellular response of human intestinal epithelium at the transcriptional level in the context of a variety of different environments.
Subject(s)
Intestinal Mucosa , Intestine, Small , Organoids , Single-Cell Analysis , Humans , Organoids/cytology , Organoids/metabolism , Intestine, Small/cytology , Intestine, Small/metabolism , Single-Cell Analysis/methods , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Gene Expression Profiling/methods , Transcriptome/geneticsABSTRACT
Background & Aims: Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. Methods: We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We validated differences in key pathways through functional studies and determined if these cultures recapitulate known features of the infant intestinal epithelium. Results: RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. Conclusions: HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex-vivo model to advance studies of infant-specific diseases and drug discovery for this population.
ABSTRACT
Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights into this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells that were then transplanted and matured in mice before making enteroids (H9tHIEs), genetically engineered (J4FUT2 knock-in [KI], J2STAT1 knockout [KO]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of genogroup I and II HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research.IMPORTANCEHuman noroviruses (HuNoVs) cause global diarrheal illness and chronic infections in immunocompromised patients. This paper reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from (i) different intestinal segments of single donors, (ii) human embryonic stem cell-derived organoids transplanted into mice, (iii) genetically modified lines, and (iv) a patient with common variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment, and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically modified J4FUT2 knock-in (KI) HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.
ABSTRACT
Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically-modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights to this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells into intestinal organoids that were transplanted and matured in mice before making enteroids (H9tHIEs), genetically-engineered (J4 FUT2 knock-in [ KI ], J2 STAT1 knock-out [ KO ]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4 FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of GI and GII HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research. Importance: HuNoVs cause global diarrheal illness and chronic infections in immunocompromised patients. This manuscript reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from i) different intestinal segments of single donors, ii) human embryonic stem cell-derived organoids transplanted into mice, iii) genetically-modified lines, and iv) a patient with chronic variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically-modified J4 FUT2-KI HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.
ABSTRACT
Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We then validated differences in key pathways through functional studies and determined whether these cultures recapitulate known features of the infant intestinal epithelium. RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell, and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex vivo model to advance studies of infant-specific diseases and drug discovery for this population. IMPORTANCE: Tissue or biopsy stem cell-derived human intestinal enteroids are increasingly recognized as physiologically relevant models of the human gastrointestinal epithelium. While enteroids from adults and fetal tissues have been extensively used for studying many infectious and non-infectious diseases, there are few reports on enteroids from infants. We show that infant enteroids exhibit both transcriptomic and morphological differences compared to adult cultures. They also differ in functional responses to barrier disruption and innate immune responses to infection, suggesting that infant and adult enteroids are distinct model systems. Considering the dramatic changes in body composition and physiology that begin during infancy, tools that appropriately reflect intestinal development and diseases are critical. Infant enteroids exhibit key features of the infant gastrointestinal epithelium. This study is significant in establishing infant enteroids as age-appropriate models for infant intestinal physiology, infant-specific diseases, and responses to pathogens.