Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 574
Filter
1.
Nature ; 596(7872): 362-366, 2021 08.
Article in English | MEDLINE | ID: mdl-34408329

ABSTRACT

Polaritons in anisotropic materials result in exotic optical features, which can provide opportunities to control light at the nanoscale1-10. So far these polaritons have been limited to two classes: bulk polaritons, which propagate inside a material, and surface polaritons, which decay exponentially away from an interface. Here we report a near-field observation of ghost phonon polaritons, which propagate with in-plane hyperbolic dispersion on the surface of a polar uniaxial crystal and, at the same time, exhibit oblique wavefronts in the bulk. Ghost polaritons are an atypical non-uniform surface wave solution of Maxwell's equations, arising at the surface of uniaxial materials in which the optic axis is slanted with respect to the interface. They exhibit an unusual bi-state nature, being both propagating (phase-progressing) and evanescent (decaying) within the crystal bulk, in contrast to conventional surface waves that are purely evanescent away from the interface. Our real-space near-field imaging experiments reveal long-distance (over 20 micrometres), ray-like propagation of deeply subwavelength ghost polaritons across the surface, verifying long-range, directional and diffraction-less polariton propagation. At the same time, we show that control of the out-of-plane angle of the optic axis enables hyperbolic-to-elliptic topological transitions at fixed frequency, providing a route to tailor the band diagram topology of surface polariton waves. Our results demonstrate a polaritonic wave phenomenon with unique opportunities to tailor nanoscale light in natural anisotropic crystals.

2.
Cancer Sci ; 115(1): 155-169, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972389

ABSTRACT

Cancer-associated fibroblasts (CAFs), as important components of the tumor microenvironment, can regulate intercellular communication and tumor development by secreting extracellular vesicles (EVs). However, the role of CAF-derived EVs in ovarian cancer has not been fully elucidated. Here, using an EV-microRNA sequencing analysis, we reveal specific overexpression of microRNA (miR)-296-3p in activated CAF-derived EVs, which can be transferred to tumor cells to regulate the malignant phenotypes of ovarian cancer cells. Moreover, overexpression of miR-296-3p significantly promotes the proliferation, migration, invasion, and drug resistance of ovarian cancer cells in vitro, as well as tumor growth in vivo, while its inhibition has the opposite effects. Further mechanistic studies reveal that miR-296-3p promotes ovarian cancer progression by directly targeting PTEN and SOCS6 and activating AKT and STAT3 signaling pathways. Importantly, increased expression of miR-296-3p encapsulated in plasma EVs is closely correlated with tumorigenesis and chemoresistance in patients with ovarian cancer. Our results highlight the cancer-promoting role of CAF-derived EVs carrying miR-296-3p in ovarian cancer progression for the first time, and suggest that miR-296-3p encapsulated in CAF-derived EVs could be a diagnostic biomarker and therapeutic target for ovarian cancer.


Subject(s)
Cancer-Associated Fibroblasts , Extracellular Vesicles , MicroRNAs , Ovarian Neoplasms , Humans , Female , Proto-Oncogene Proteins c-akt , Ovarian Neoplasms/genetics , Extracellular Vesicles/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , Tumor Microenvironment/genetics , Suppressor of Cytokine Signaling Proteins , PTEN Phosphohydrolase/genetics , STAT3 Transcription Factor/genetics
3.
Small ; 20(12): e2307454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37948430

ABSTRACT

Lead halide hybrid perovskites have made great progress in direct X-ray detection and broadband photodetection, but the existence of toxic Pb and the demand for external operating voltage have severely limited their further applications and operational stability improvements. Therefore, exploring "green" lead-free hybrid perovskite that can both achieve X-ray detection and broadband photodetection without external voltage is of great importance, but remains severely challenging. Herein, using centrosymmetric (BZA)3BiI6 (1, BZA = benzylamine) as a template, a pair of chiral-polar lead-free perovskites, (BZA)2(R/S-PPA)BiI6 (2-R/S, R/S-PPA = (R/S)-1-Phenylpropylamine) are successfully obtained by introducing chiral aryl cations of (R/S)-1-Phenylpropylamine. Compared to 1, chiral-polar 2-R presents a significant irradiation-responsive bulk photovoltaic effect (BPVE) with an open circuit photovoltage of 0.4 V, which enables it with self-powered X-ray, UV-vis-NIR broadband photodetection. Specifically, 2-R device exhibits an ultralow detection limit of 18.5 nGy s-1 and excellent operational stability. Furthermore, 2-R as the first lead-free perovskite achieves significant broad-spectrum (377-940 nm) photodetection via light-induced pyroelectric effect. This work sheds light on the rational crystal reconstruction engineering and design of "green" hybrid perovskite toward high-demanded self-powered radiation detection and broadband photodetection.

4.
Small ; : e2312281, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456782

ABSTRACT

The low-toxic and environmentally friendly 2D lead-free perovskite has made significant progress in the exploration of "green" X-ray detectors. However, the gap in detection performance between them and their lead-based analogues remains a matter of concern that cannot be ignored. To reduce this gap, shortening the interlayer spacing to accelerate the migration and collection of X-ray carriers is a promising strategy. Herein, a Dion-Jacobson (DJ) lead-free double perovskite (4-AP)2 AgBiBr8 (1, 4-AP = 4-amidinopyridine) with an ultra-narrow interlayer spacing of 3.0 Å, is constructed by utilizing π-conjugated aromatic spacers. Strikingly, the subsequent enhanced carrier transport and increased crystal density lead to X-ray detectors based on bulk single crystals of 1 with a high sensitivity of 1117.3 µC Gy-1  cm-2 , superior to the vast majority of similar double perovskites. In particular, the tight connection of the inorganic layers by the divalent cations enhances structural rigidity and stability, further endowing 1 detector with ultralow dark current drift (3.06 × 10-8  nA cm-1  s-1  V-1 , 80 V), excellent multiple cycles switching X-ray irradiation stability, as well as long-term environmental stability (maintains over 94% photoresponse after 90 days). This work brings lead-free double perovskites one step closer to realizing efficient practical green applications.

5.
Pharm Res ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918308

ABSTRACT

PURPOSE: Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS: A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS: TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS: These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.

6.
Inorg Chem ; 63(1): 613-620, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38102774

ABSTRACT

The self-assembly of the lanthanide metal-organic frameworks presents a formidable challenge but profound significance. Compared with the metal-organic frameworks based on 4f-3d ions, the chemistry of 4f-3p metal-organic frameworks has not been fully explored so far. In this study, two lanthanide-aluminum-based clusters [Ln6Al(IN)10(µ3-OH)5(µ3-O)3(H2O)8]·xH2O (x = 2, Ln = Gd, abbreviated as Gd6Al; x = 2.5, Ln = Eu, abbreviated as Eu6Al; HIN = isonicotinic acid) have been meticulously designed and obtained by hydrothermal reaction at low pH. The crystallographic study revealed that both Gd6Al and Eu6Al clusters exhibit an unprecedented sandwiched metal-organic framework holding a highly ordered honeycomb network. To our knowledge, it is the first case of Ln-Al-based cluster-organic frameworks. Furthermore, magnetic investigation of Gd6Al manifests a decent magnetic entropy change of -ΔSmmax = 28.8 J kg-1 K-1 at 2 K for ΔH = 7.0 T. Significantly, the introduction of AlIII ions into the lanthanide metal-organic frameworks displays excellent solid-state luminescent capability with a lifetime of 371.6 µs and quantum yield of 6.64%. The construction and investigation of these two Ln-Al clusters represent great progress in the 4f-3p metal-organic framework.

7.
Environ Res ; 242: 117771, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38036210

ABSTRACT

Mineral processing wastewater contains a lot of organic matter and heavy metal ions, and poor self-degradation ability makes it a key treatment object in environmental treatment. Photocatalysis is a promising technology to efficiently mineralize refractory contaminants from wastewater. In this work, 3D flower-like S-scheme N-Bi2O2CO3/g-C3N4 heterostructures were successfully constructed by hydrothermal method with the auxiliary of ionic liquids. The photocatalytic experiments show that the catalytic activity of heterojunction photocatalysts was significantly higher than that of bare g-C3N4 and N-Bi2O2CO3 for the degradation of two pollutants. NBOC/CN-2 shows the highest photocatalytic performance, and the degradation efficiency of sodium isobutyl xanthate (SIBX) on NBOC/CN-2 is 1.85 and 3 times that of bare g-C3N4 and Bi2O2CO3, respectively. The degradation efficiency of m-Cresol on NBOC/CN-2 is 8.34 and 6.93 times that of bare g-C3N4 and N-Bi2O2CO3, respectively. This significantly enhanced photocatalytic activity is attributed to the formation of flower-like heterojunctions, which can greatly increase the specific surface area and facilitate the separation and migration of photogenerated carriers. Total organic carbon (TOC) experiment proves that the two pollutants are effectively mineralized under the action of the prepared photocatalyst. The degradation path of m-Cresol degradation products was inferred based on the ion fragments. The capture experiment and Nitro-blue tetrazolium (NBT)-•O2- measurement show that superoxide radical plays a major role in photocatalytic degradation. The outstanding stability of the prepared flower-like heterojunction samples was examined by cyclic experiments. The S-scheme charge transfer mechanism has been proposed to explain the boosted activity of the flower-like heterojunction photocatalyst. This work provides a new idea for the design of efficient and stable g-C3N4-based photocatalyst for the photocatalytic degradation of refractory wastewater.


Subject(s)
Environmental Pollutants , Ionic Liquids , Wastewater , Cresols
8.
Int J Clin Pharmacol Ther ; 62(5): 222-228, 2024 May.
Article in English | MEDLINE | ID: mdl-38431833

ABSTRACT

OBJECTIVE: Azvudine is an effective treatment for patients infected with common COVID-19. However, physicians have reported a series of adverse reactions, including multiple cases of liver injury, caused by azvudine in clinical practice. This study assessed the incidence, clinical features, and associated risk factors of liver injury induced by azvudine in real-world settings, offering guidance for safe clinical use. MATERIALS AND METHODS: This study utilized the Chinese Hospital Pharmacovigilance System (CHPS) to retrospectively analyze the treatment of COVID-19 patients with azvudine at Changsha Central Hospital from December 19, 2022, to June 6, 2023. A case-control study was conducted to analyze the occurrence of azvudine-induced liver injury in COVID-19 patients who triggered a CHPS alert compared to normal COVID-19 patients. RESULTS: Among the total of 2,141 COVID-19 patients, 31 (1.45%) developed azvudine-induced liver injury, which is classified as an occasional adverse reaction. Liver injury was observed in 93.55% of patients between days 4 and 12 of the azvudine treatment, with elevated transaminases as the primary clinical manifestation. Univariate and binary logistic regression analyses indicated that low albumin levels and co-administration of low-molecular-weight heparin were statistically significant risk factors (p < 0.05). CONCLUSION: This study represents the first investigation of azvudine-induced liver injury and high-risk patients using the CHPS. The findings provide valuable insights to promote the safety of anti-COVID-19 drugs, serving as an important reference for future drug safety measures.


Subject(s)
Azides , COVID-19 , Chemical and Drug Induced Liver Injury, Chronic , Deoxycytidine/analogs & derivatives , Humans , Heparin, Low-Molecular-Weight/adverse effects , Pharmacovigilance , Retrospective Studies , Case-Control Studies , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Prospective Studies , Risk Factors , Albumins
9.
Genomics ; 115(4): 110643, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217084

ABSTRACT

MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.


Subject(s)
Arabidopsis , Pogostemon , Pogostemon/genetics , Pogostemon/metabolism , Plant Proteins/genetics , Phylogeny , Arabidopsis/genetics , Transcription Factors/metabolism
10.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38721924

ABSTRACT

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Subject(s)
AMP-Activated Protein Kinases , Caffeic Acids , Peritoneal Dialysis , Peritoneal Fibrosis , Phenylethyl Alcohol , Sirtuin 1 , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Dialysis Solutions , Disease Models, Animal , Homeostasis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/prevention & control , Peritoneum/pathology , Peritoneum/drug effects , Peritoneum/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Transforming Growth Factor beta1/metabolism
11.
Int J Nurs Pract ; : e13277, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840131

ABSTRACT

PURPOSE: To evaluate the effect of nonpharmacological therapies on nutrition status, complications and quality of life in head and neck cancer patients and to provide a basis for clinical practice. METHODS: This systematic review was reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis statement. Ten databases were systematically searched for all available articles from construction to November 2023. Two researchers independently conducted literature screening, data extraction and quality evaluation. Cochrane Review Manager 5.3 was used for meta-analysis. RESULTS: Finally, 27 RCT studies including 2814 patients with head and neck cancer were included. Five categories of interventions were used: nutritional support, exercise, swallowing function training, psychological intervention and low-level laser therapy. Nonpharmacological interventions can improve body weight loss in patients with HNC at the end of treatment (MD: 1.66 kg; 95% CI: 0.80 to 2.51), and subgroup analysis showed that nutritional support, psychological intervention and low-level laser therapy were effective. Nonpharmacological interventions can also ameliorate decreases in BMI (MD: 0.71; 95% CI: 0.16 to 1.26) and reduce the incidence of malnutrition (RR: 0.76; 95% CI: 0.67 to 0.86), oral mucositis (RR: 0.54; 95% CI: 0.37 to 0.80) and gastrointestinal complications (RR: 0.61; 95% CI: 0.38 to 0.96) during radiotherapy; however, no significant differences were found in other complications and quality of life. CONCLUSION: Nonpharmacological interventions can improve the nutrition status of patients with head and neck cancer and reduce the incidence of severe oral mucositis and gastrointestinal complications during radiotherapy but have no significant impact on quality of life.

12.
Public Health Nurs ; 41(3): 476-486, 2024.
Article in English | MEDLINE | ID: mdl-38468509

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer mortality. HCC has high morbidity, high mortality, and low survival rates. Screening is one of the most significant methods of lowering incidence and death while also increasing survival. OBJECTIVES: The aim of this study was to identify the facilitators and barriers to participation in HCC screening among high-risk populations. METHODS: A comprehensive and systematic search was undertaken in PubMed, Web of Science, MEDLINE, EMBACE, EBSCOhost and the Cochrane Library. A combination of synonyms of the keywords including HCC, screening, factors and adherence were used for searching. Studies addressing the facilitators and barriers to HCC screening compliance in at-risk individuals were included. Data were synthesized using Review Manager version 5.4. A random/fixed effects model meta-analysis was performed to estimate the pooled data and expressed with odds ratio (OR) and 95% confidence interval (CI). RESULTS: A total of seven articles met the inclusion criteria. Qualitative (n = 1) and quantitative (n = 6) studies using various types of surgery were conducted. The most commonly mentioned barriers were insufficient knowledge and awareness of HCC screening, unawareness of the necessity for early detection of HCC and lack of physician recommendation. A meta-analysis of seven studies showed that individuals with a family history of HCC increased screening uptake by nearly three times (OR: 2.69, 95% CI: 1.93, 3.75). Other most frequently reported facilitators include age, education level, and perceived risk et al. CONCLUSIONS: Many barriers to HCC screening were found. Meanwhile, this review points out that improving the awareness of high-risk populations toward HCC screening is expected to enhance compliance, thereby promoting early diagnosis of liver cancer, reducing mortality, and alleviating the burden of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Incidence
13.
J Am Chem Soc ; 145(34): 19086-19097, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37596995

ABSTRACT

Metal oxide nanozymes have emerged as the most efficient and promising candidates to mimic antioxidant enzymes for treatment of oxidative stress-mediated pathophysiological disorders, but the current effectiveness is unsatisfactory due to insufficient catalytic performance. Here, we report for the first time an intrinsic strain-mediated ultrathin ceria nanoantioxidant. Surface strain in ceria with variable thicknesses and coordinatively unsaturated Ce sites was investigated by theoretical calculation analysis and then was validated by preparing ∼1.2 nm ultrathin nanoplates with ∼3.0% tensile strain in plane/∼10.0% tensile strain out of plane. Compared with nanocubes, surface strain in ultrathin nanoplates could enhance the covalency of the Ce-O bond, leading to increasing superoxide dismutase (SOD)-mimetic activity by ∼2.6-fold (1533 U/mg, in close proximity to that of natural SOD) and total antioxidant activity by ∼2.5-fold. As a proof of concept, intrinsic strain-mediated ultrathin ceria nanoplates could boost antioxidation for improved ischemic stroke treatment in vivo, significantly better than edaravone, a commonly used clinical drug.


Subject(s)
Antioxidants , Ischemic Stroke , Humans , Antioxidants/pharmacology , Catalysis , Oxides , Superoxide Dismutase
14.
Mol Pain ; 19: 17448069231152125, 2023.
Article in English | MEDLINE | ID: mdl-36604795

ABSTRACT

Nerve injury can induce aberrant changes in ion channels, enzymes, and cytokines/chemokines in the dorsal root ganglia (DRGs); these changes are due to or at least partly governed by transcription factors that contribute to the genesis of neuropathic pain. However, the involvement of transcription factors in neuropathic pain is poorly understood. In this study, we report that transcription factor (TF) ETS proto-oncogene 1 (ETS1) is required for the initiation and development of neuropathic pain. Sciatic nerve chronic constrictive injury (CCI, a clinical neuropathic pain model) increases ETS1 expression in the injured male mouse DRG. Blocking this upregulation alleviated CCI-induced mechanical allodynia and thermal hyperalgesia, with no apparent effect on locomotor function. Mimicking this upregulation results in the genesis of nociception hypersensitivity; mechanistically, nerve injury-induced ETS1 upregulation promotes the expression of histone deacetylase 1 (HDAC1, a key initiator of pain) via enhancing its binding activity to the HDAC1 promotor, leading to the elevation of spinal central sensitization, as evidenced by increased expression of p-ERK1/2 and GFAP in the dorsal spinal horn. It appears that the ETS1/HDAC1 axis in DRG may have a critical role in the development and maintenance of neuropathic pain, and ETS1 is a potential therapeutic target in neuropathic pain.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Animals , Male , Mice , Ganglia, Spinal/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/pharmacology , Hyperalgesia/metabolism , Neuralgia/metabolism , Neurons, Afferent/metabolism , Peripheral Nerve Injuries/metabolism , Proto-Oncogenes , Rats, Sprague-Dawley , Transcription Factors/metabolism , Rats
15.
Genome Res ; 30(7): 1027-1039, 2020 07.
Article in English | MEDLINE | ID: mdl-32699019

ABSTRACT

Joint profiling of transcriptome and chromatin accessibility within single cells allows for the deconstruction of the complex relationship between transcriptional states and upstream regulatory programs determining different cell fates. Here, we developed an automated method with high sensitivity, assay for single-cell transcriptome and accessibility regions (ASTAR-seq), for simultaneous measurement of whole-cell transcriptome and chromatin accessibility within the same single cell. To show the utility of ASTAR-seq, we profiled 384 mESCs under naive and primed pluripotent states as well as a two-cell like state, 424 human cells of various lineage origins (BJ, K562, JK1, and Jurkat), and 480 primary cord blood cells undergoing erythroblast differentiation. With the joint profiles, we configured the transcriptional and chromatin accessibility landscapes of discrete cell states, uncovered linked sets of cis-regulatory elements and target genes unique to each state, and constructed interactome and transcription factor (TF)-centered upstream regulatory networks for various cell states.


Subject(s)
Chromatin/metabolism , Gene Expression Profiling/methods , Gene Regulatory Networks , Single-Cell Analysis/methods , Animals , Cell Differentiation , Cell Line , Cells, Cultured , Embryonic Stem Cells , Epigenesis, Genetic , Erythroblasts/cytology , Erythroblasts/metabolism , Humans , Mice , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Transcriptome
16.
Opt Express ; 31(17): 28010-28017, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710864

ABSTRACT

Phonon polaritons (PhPs), collective modes hybridizing photons with lattice vibrations in polar insulators, enable nanoscale control of light. In recent years, the exploration of in-plane anisotropic PhPs has yielded new levels of confinement and directional manipulation of nano-light. However, the investigation of in-plane anisotropic PhPs at the atomic layer limit is still elusive. Here, we report the optical nanoimaging of highly-confined phonon polaritons in atomically-thin nanoribbons of α-MoO3 (5 atomic layers). We show that narrow α-MoO3 nanoribbons as thin as a few atomic layers can support anisotropic PhPs modes with a high confinement ratio (∼133 times smaller wavelength than that of light). The anisotropic PhPs interference fringe patterns in atomic layers are tunable depending on the PhP wavelength via changing the illumination frequency. Moreover, spatial control over the PhPs interference patterns is also achieved by varying the nanostructures' shape or nanoribbon width of atomically-thin α-MoO3. Our work may serve as an empirical reference point for other anisotropic PhPs that approach the thickness limit and pave the way for applications such as atomically integrated nano-photonics and sensing.

17.
J Magn Reson Imaging ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855421

ABSTRACT

BACKGROUND: Assessment of lymphovascular invasion (LVI) in breast cancer (BC) primarily relies on preoperative needle biopsy. There is an urgent need to develop a non-invasive assessment method. PURPOSE: To develop an effective model to assess the LVI status in patients with BC using magnetic resonance imaging morphological features (MRI-MF), Radiomics, and deep learning (DL) approaches based on dynamic contrast-enhanced MRI (DCE-MRI). STUDY TYPE: Cross-sectional retrospective cohort study. POPULATION: The study included 206 BC patients, with 136 in the training set [97 LVI(-) and 39 LVI(+) cases; median age: 51.5 years] and 70 in the test set [52 LVI(-) and 18 LVI(+) cases; median age: 48 years]. FIELD STRENGTH/SEQUENCE: 1.5 T/T1-weighted images, fat-suppressed T2-weighted images, diffusion-weighted imaging (DWI), and DCE-MRI. ASSESSMENT: The MRI-MF model was developed with conventional MR features using logistic analyses. The Radiomic feature extraction process involved collecting data from categorized DCE-MRI datasets, specifically the first and second post-contrast images (A1 and A2). Next, a DL model was implemented to determine LVI. Finally, we established a joint diagnosis model by combining the MRI-MF, Radiomics, and DL approaches. STATISTICAL TESTS: Diagnostic performance was compared using receiver operating characteristic curve analysis, confusion matrix, and decision curve analysis. RESULTS: Rim sign and peritumoral edema features were used to develop the MRI-MF model, while six Radiomics signature from the A1 and A2 images were used for the Radiomics model. The joint model (MRI-MF + Radiomics + DL models) achieved the highest accuracy (area under the curve [AUC] = 0.857), being significantly superior to the MRI-MF (AUC = 0.724), Radiomics (AUC = 0.736), or DL (AUC = 0.740) model. Furthermore, it also outperformed the pairwise combination models: Radiomics + MRI-MF (AUC = 0.796), DL + MRI-MF (AUC = 0.796), or DL + Radiomics (AUC = 0.826). DATA CONCLUSION: The joint model incorporating MRI-MF, Radiomics, and DL approaches can effectively determine the LVI status in patients with BC before surgery. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 2.

18.
Phys Chem Chem Phys ; 25(18): 13027-13032, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37114336

ABSTRACT

Active matter exhibits many intriguing non-equilibrium characteristics, for instance, without any attractive and aligned interactions, the active Brownian particle (ABP) system undergoing motility-induced phase separation forms a high-density phase with both structural ordering and dynamical coherence. Recently, the velocity correlation among the particles in this high-density phase was found in non-thermal overdamped ABP systems. However, it seemed to disappear if thermal noises were included, bringing some confusion about the generality of the consistency between structures and dynamics in ABPs. Here, we demonstrate that the thermal noises imposing a large random term on the instantaneous velocity of ABPs hinder the observation of the inherent correlation in the motions of ABPs. By averaging the instantaneous velocity (or equivalently, calculating the displacement), we show that the inherent motions of thermal-fluctuated ABPs are highly coherent. Whether there is thermal noise or not, the inherent collective motions of ABPs do exist, and the collective motion domains are consistent spatially with the ordered clusters of ABPs in the high-density phase. At the boundary of these ordered clusters, the active forces of the particles tend to point inward and compress to sustain these clusters, thus the particles in the clusters move coherently to form some vortex-like or aligned velocity domains.

19.
Phys Chem Chem Phys ; 25(40): 27331-27341, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37791573

ABSTRACT

Designing noble metal-free anode catalysts for visible light-assisted direct methanol fuel cells still remains a significant challenge. In this study, combining the photocatalytic and electrocatalytic properties of CoSx, a visible light-assisted methanol electrocatalytic oxidation strategy was provided. Doping engineering was employed to adjust the electronic structure of CoSx and improve their photoassisted methanol electrocatalytic oxidation activity. Using ZIF-67 as precursor, transition metal-doped CoSx (M-CoSx, M = Zn, Cu, Ni, and Cd) nanocage was synthesized by cation exchange and L-cysteine-controlled etching. Cd doping not only widens the light adsorption to the visible region but also enhances the separation efficiency of photogenerated electron-hole pairs. The electrochemical and photochemical results indicated that the strong oxidative photogenerated hole, OH˙, and O2˙- are beneficial for methanol electrocatalytic oxidation. The synergistic electrocatalytic and photocatalytic effect will be a practical strategy for improving the methanol electrocatalytic oxidation activity of noble metal-free semiconductor catalysts.

20.
Environ Res ; 237(Pt 2): 116976, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37625535

ABSTRACT

Soil, as a heterogeneous body, is composed of different-sized aggregates. There is limited data available on the potential role of microplastics (MPs) in microbial properties at the soil aggregate level. In this study, changes in microbial construction and diversity in farmland bulk soil and aggregates induced by polyethylene MPs (PE-MPs) were investigated at a dose of 0.5% (w/w) through 16s rDNA sequencing and enzyme activity measurements of different particle size aggregates in incubated soil. The presence of low-dose PE-MPs increased the proportion of >1 mm soil aggregates fraction, and decreased soil available nitrogen and available phosphorus in bulk soils. Furthermore, low-dose PE-MPs increased bacterial richness and diversity in 1-0.5 and < 0.25 mm fractions and decreased operational taxonomic unit, abundance-based coverage estimator, and Chao1 indices in bulk soil and >1 mm fractions. The levels of predicted functional genes taking part in the biodegradation and metabolism of exogenous substances also increased. At the phylum level, PE-MPs changed the proportion of Proteobacteria and Actinobacteria. The variations in soil aggregate properties were significantly correlated with the bacterial communities' composition and diversity. This study deepens our perception of the soil microenvironment, microbial community composition, and diversity in response to PE-MPs.

SELECTION OF CITATIONS
SEARCH DETAIL