Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Front Psychiatry ; 10: 706, 2019.
Article in English | MEDLINE | ID: mdl-31649562

ABSTRACT

Autism spectrum disorder (ASD) is a set of complex neurodevelopmental disorders with etiology that remains elusive. Although there is a mounting body of investigation in different brain regions related to ASD, our knowledge about the common and distinct perturb condition between them is at the threshold of accumulation. In this study, based on protein-protein interactions, post-mortem transcriptome analysis was performed with corpus callosum (CC) and prefrontal cortex (PFC) samples from ASD individuals and controls. Co-expression network analysis revealed that a total of seven (four for CC set, three for PFC set) core dysfunctional modules strongly enriched for known ASD-risk genes. Three quarters of them in CC set (M4, M6, M29) significantly enriched for genes annotated by genetically associated variants in our previous whole genome sequencing data. We further determined transcriptional and post-transcriptional regulation subnetwork for each ASD-correlated module, including 47 pivot transcription factors, 130 pivot miRNAs, and 7 pivot lncRNAs. Moreover, there were significantly more interactions between CC-M4, -M6, and PFC-M2, mainly involved in synaptic functions and neuronal development. Our integrated multifactor analysis of ASD brain transcriptome profile illustrated underlying common and distinct molecular mechanisms and the module crosstalk between CC and PFC, helping to shed light on the molecular neuropathological underlying ASD.

2.
Front Neurosci ; 13: 712, 2019.
Article in English | MEDLINE | ID: mdl-31379474

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Aberrant DNA methylation has been observed in ASD but the mechanisms remain largely unknown. Here, we employed discordant monozygotic twins to investigate the contribution of DNA methylation to ASD etiology. Genome-wide DNA methylation analysis was performed using samples obtained from five pairs of ASD-discordant monozygotic twins, which revealed a total of 2,397 differentially methylated genes. Further, such gene list was annotated with Kyoto Encyclopedia of Genes and Genomes and demonstrated predominant activation of neurotrophin signaling pathway in ASD-discordant monozygotic twins. The methylation of SH2B1 gene was further confirmed in the ASD-discordant, ASD-concordant monozygotic twins, and a set of 30 pairs of sporadic case-control by bisulfite-pyrosequencing. The results showed that there was a greater DNA methylation difference in ASD-discordant monozygotic twins than ASD-concordant monozygotic twins. Further, verification of the Chr.16:28856743 of SH2B1 showed significant differences in DNA methylation between case and control. These results suggest abnormal methylation of SH2B1 is associated with ASD etiology. Our data suggest that it might be worthwhile to further explore the functions of SH2B1 and related genes of neurotrophin signaling pathway in ASD.

3.
Mol Ther Nucleic Acids ; 14: 204-211, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30623854

ABSTRACT

Autism spectrum disorder (ASD) presents a set of childhood neurodevelopmental disorders with impairments in social communication and restricted, repetitive, and stereotyped patterns of behavior. Here, based on the whole-genome sequencing (WGS) data of three monozygotic twins discordant for ASD, we explored multiple patient-specific genetic variations and prioritized a list of ASD risk genes. Our results identified DVMT (discordant variation in monozygotic twin) observed in at least two twin pairs, including 14,310 SNPs, 2,425 indels, and 16,735 CNVs, referring to a total of 2,174 genes, and 37 of these were covered by all three types of variations. Gene ontology (GO) enrichment analysis of biological processes for 2,174 genes showed that the majority of these genes were related to neurodevelopmental processes. In addition, functional network analysis showed that there was a strong functional relevance between 37 genes covered by all three types of variations. In conclusion, for the first time, we conducted a comprehensive scan of genomic differences between monozygotic twins discordant for ASD, providing researchers with in-depth directions. It may also provide effective strategies for clinical treatment of individuals affected by ASD.

SELECTION OF CITATIONS
SEARCH DETAIL