Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.572
Filter
1.
Cell ; 185(4): 630-640.e10, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35093192

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic continues worldwide with many variants arising, some of which are variants of concern (VOCs). A recent VOC, omicron (B.1.1.529), which obtains a large number of mutations in the receptor-binding domain (RBD) of the spike protein, has risen to intense scientific and public attention. Here, we studied the binding properties between the human receptor ACE2 (hACE2) and the VOC RBDs and resolved the crystal and cryoelectron microscopy structures of the omicron RBD-hACE2 complex as well as the crystal structure of the delta RBD-hACE2 complex. We found that, unlike alpha, beta, and gamma, omicron RBD binds to hACE2 at a similar affinity to that of the prototype RBD, which might be due to compensation of multiple mutations for both immune escape and transmissibility. The complex structures of omicron RBD-hACE2 and delta RBD-hACE2 reveal the structural basis of how RBD-specific mutations bind to hACE2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Receptors, Virus/chemistry , SARS-CoV-2/chemistry , Amino Acid Sequence , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation/genetics , Phylogeny , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/ultrastructure , Static Electricity , Structural Homology, Protein
2.
Nat Immunol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942990

ABSTRACT

The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.

3.
Cell ; 183(6): 1665-1681.e18, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33188776

ABSTRACT

We present deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq) for co-mapping of mRNAs and proteins in a formaldehyde-fixed tissue slide via next-generation sequencing (NGS). Parallel microfluidic channels were used to deliver DNA barcodes to the surface of a tissue slide, and crossflow of two sets of barcodes, A1-50 and B1-50, followed by ligation in situ, yielded a 2D mosaic of tissue pixels, each containing a unique full barcode AB. Application to mouse embryos revealed major tissue types in early organogenesis as well as fine features like microvasculature in a brain and pigmented epithelium in an eye field. Gene expression profiles in 10-µm pixels conformed into the clusters of single-cell transcriptomes, allowing for rapid identification of cell types and spatial distributions. DBiT-seq can be adopted by researchers with no experience in microfluidics and may find applications in a range of fields including developmental biology, cancer biology, neuroscience, and clinical pathology.


Subject(s)
DNA Barcoding, Taxonomic , Genomics , Organ Specificity/genetics , Animals , Automation , Brain/embryology , Cluster Analysis , DNA, Complementary/genetics , Embryo, Mammalian/metabolism , Eye/embryology , Female , Gene Expression Regulation, Developmental , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice, Inbred C57BL , Microfluidics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Single-Cell Analysis , Transcriptome/genetics
4.
Cell ; 181(3): 637-652.e15, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32272059

ABSTRACT

Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.


Subject(s)
Protein Translocation Systems/metabolism , Vesicular Transport Proteins/metabolism , Animals , Biological Transport , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , Mice , Mice, Inbred C57BL , Protein Sorting Signals , Protein Translocation Systems/physiology , Protein Transport/physiology , Proteins/metabolism , Secretory Pathway , Vesicular Transport Proteins/physiology
5.
Nat Rev Mol Cell Biol ; 18(2): 90-101, 2017 02.
Article in English | MEDLINE | ID: mdl-27924077

ABSTRACT

Eight types of short-chain Lys acylations have recently been identified on histones: propionylation, butyrylation, 2-hydroxyisobutyrylation, succinylation, malonylation, glutarylation, crotonylation and ß-hydroxybutyrylation. Emerging evidence suggests that these histone modifications affect gene expression and are structurally and functionally different from the widely studied histone Lys acetylation. In this Review, we discuss the regulation of non-acetyl histone acylation by enzymatic and metabolic mechanisms, the acylation 'reader' proteins that mediate the effects of different acylations and their physiological functions, which include signal-dependent gene activation, spermatogenesis, tissue injury and metabolic stress. We propose a model to explain our present understanding of how differential histone acylation is regulated by the metabolism of the different acyl-CoA forms, which in turn modulates the regulation of gene expression.


Subject(s)
Gene Expression Regulation , Histones/chemistry , Histones/metabolism , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Acylation , Animals , Fatty Acids, Volatile/metabolism , Histones/genetics , Humans , Lysine/metabolism , Male , Protein Domains , Protein Processing, Post-Translational , Spermatogenesis , Stress, Physiological
6.
Nature ; 616(7955): 152-158, 2023 04.
Article in English | MEDLINE | ID: mdl-36991121

ABSTRACT

Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis1-3. Here we identify a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase NS3 contains an N-terminal four-helix bundle domain homologous to the membrane-disruption domain of the pseudokinase mixed lineage kinase domain-like (MLKL). NS3 has a mitochondrial localization signal and thus induces cell death by targeting mitochondria. Full-length NS3 and an N-terminal fragment of the protein bound the mitochondrial membrane lipid cardiolipin, permeabilized the mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NS3 were essential for cell death, viral egress from cells and viral replication in mice. These findings suggest that noroviruses have acquired a host MLKL-like pore-forming domain to facilitate viral egress by inducing mitochondrial dysfunction.


Subject(s)
Cell Death , Norovirus , Nucleoside-Triphosphatase , Protein Kinases , Viral Proteins , Animals , Mice , Mitochondria/metabolism , Mitochondria/pathology , Norovirus/enzymology , Norovirus/growth & development , Norovirus/pathogenicity , Norovirus/physiology , Protein Kinases/chemistry , Virus Replication , Viral Proteins/chemistry , Viral Proteins/metabolism , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/metabolism , Protein Sorting Signals , Cardiolipins/metabolism , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism
7.
Nature ; 616(7955): 113-122, 2023 04.
Article in English | MEDLINE | ID: mdl-36922587

ABSTRACT

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Subject(s)
Chromatin , Epigenome , Mammals , Transcriptome , Animals , Humans , Mice , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic , Epigenomics , Gene Expression Profiling , Gene Expression Regulation , Mammals/genetics , Histones/chemistry , Histones/metabolism , Single-Cell Analysis , Organ Specificity , Brain/embryology , Brain/metabolism , Aging/genetics
8.
Nature ; 606(7915): 812-819, 2022 06.
Article in English | MEDLINE | ID: mdl-35676475

ABSTRACT

DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.


Subject(s)
Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Replication Origin , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication , Humans , Replication Origin/genetics , S Phase , Cohesins
9.
Nature ; 609(7926): 375-383, 2022 09.
Article in English | MEDLINE | ID: mdl-35978191

ABSTRACT

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation Sequencing , Chromatin , Animals , Brain/metabolism , Cell Differentiation , Cell Lineage , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Chromatin Immunoprecipitation Sequencing/methods , Epigenomics , Gene Expression Profiling , Genome , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Palatine Tonsil/cytology , Palatine Tonsil/immunology
10.
Nat Methods ; 21(4): 597-608, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379073

ABSTRACT

Quantifying the number of progenitor cells that found an organ, tissue or cell population is of fundamental importance for understanding the development and homeostasis of a multicellular organism. Previous efforts rely on marker genes that are specifically expressed in progenitors. This strategy is, however, often hindered by the lack of ideal markers. Here we propose a general statistical method to quantify the progenitors of any tissues or cell populations in an organism, even in the absence of progenitor-specific markers, by exploring the cell phylogenetic tree that records the cell division history during development. The method, termed targeting coalescent analysis (TarCA), computes the probability that two randomly sampled cells of a tissue coalesce within the tissue-specific monophyletic clades. The inverse of this probability then serves as a measure of the progenitor number of the tissue. Both mathematic modeling and computer simulations demonstrated the high accuracy of TarCA, which was then validated using real data from nematode, fruit fly and mouse, all with related cell phylogenetic trees. We further showed that TarCA can be used to identify lineage-specific upregulated genes during embryogenesis, revealing incipient cell fate commitments in mouse embryos.


Subject(s)
Embryonic Development , Stem Cells , Animals , Mice , Phylogeny , Cell Differentiation/genetics , Cell Division
11.
Nat Methods ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907114

ABSTRACT

Advances in spatial omics technologies now allow multiple types of data to be acquired from the same tissue slice. To realize the full potential of such data, we need spatially informed methods for data integration. Here, we introduce SpatialGlue, a graph neural network model with a dual-attention mechanism that deciphers spatial domains by intra-omics integration of spatial location and omics measurement followed by cross-omics integration. We demonstrated SpatialGlue on data acquired from different tissue types using different technologies, including spatial epigenome-transcriptome and transcriptome-proteome modalities. Compared to other methods, SpatialGlue captured more anatomical details and more accurately resolved spatial domains such as the cortex layers of the brain. Our method also identified cell types like spleen macrophage subsets located at three different zones that were not available in the original data annotations. SpatialGlue scales well with data size and can be used to integrate three modalities. Our spatial multi-omics analysis tool combines the information from complementary omics modalities to obtain a holistic view of cellular and tissue properties.

12.
Nature ; 600(7887): 59-63, 2021 12.
Article in English | MEDLINE | ID: mdl-34666339

ABSTRACT

Mare volcanics on the Moon are the key record of thermo-chemical evolution throughout most of lunar history1-3. Young mare basalts-mainly distributed in a region rich in potassium, rare-earth elements and phosphorus (KREEP) in Oceanus Procellarum, called the Procellarum KREEP Terrane (PKT)4-were thought to be formed from KREEP-rich sources at depth5-7. However, this hypothesis has not been tested with young basalts from the PKT. Here we present a petrological and geochemical study of the basalt clasts from the PKT returned by the Chang'e-5 mission8. These two-billion-year-old basalts are the youngest lunar samples reported so far9. Bulk rock compositions have moderate titanium and high iron contents  with KREEP-like rare-earth-element and high thorium concentrations. However, strontium-neodymium isotopes indicate that these basalts were derived from a non-KREEP mantle source. To produce the high abundances of rare-earth elements and thorium, low-degree partial melting and extensive fractional crystallization are required. Our results indicate that the KREEP association may not be a prerequisite for young mare volcanism. Absolving the need to invoke heat-producing elements in their source implies a more sustained cooling history of the lunar interior to generate the Moon's youngest melts.

13.
Development ; 149(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35698877

ABSTRACT

Casein kinase 1α (CK1α), acting as one member of the ß-catenin degradation complex, negatively regulates the Wnt/ß-catenin signaling pathway. CK1α knockout usually causes both Wnt/ß-catenin and p53 activation. Our results demonstrated that conditional disruption of CK1α in spermatogonia impaired spermatogenesis and resulted in male mouse infertility. The progenitor cell population was dramatically decreased in CK1α conditional knockout (cKO) mice, while the proliferation of spermatogonial stem cells (SSCs) was not affected. Furthermore, our molecular analyses identified that CK1α loss was accompanied by nuclear stability of p53 protein in mouse spermatogonia, and dual-luciferase reporter and chromatin immunoprecipitation assays revealed that p53 directly targeted the Sox3 gene. In addition, the p53 inhibitor pifithrin α (PFTα) partially rescued the phenotype observed in cKO mice. Collectively, our data suggest that CK1α regulates spermatogenesis and male fertility through p53-Sox3 signaling, and they deepen our understanding of the regulatory mechanism underlying the male reproductive system.


Subject(s)
Casein Kinase Ialpha , Animals , Casein Kinase Ialpha/metabolism , Male , Mice , SOXB1 Transcription Factors/metabolism , Spermatogenesis/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
14.
J Virol ; : e0103924, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012142

ABSTRACT

In maintaining organismal homeostasis, gut immunity plays a crucial role. The coordination between the microbiota and the immune system through bidirectional interactions regulates the impact of microorganisms on the host. Our research focused on understanding the relationships between substantial changes in jejunal intestinal flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus (PEDV) infection in piglets. We discovered that Lactobacillus rhamnosus GG (LGG) could effectively prevent PEDV infection in piglets. Further investigation revealed that LGG metabolites interact with type 3 innate lymphoid cells (ILC3s) in the jejunum of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the activation of ILC3s and the production of interleukin-22 (IL-22). Subsequently, IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling pathway, thereby preventing PEDV infection. Moreover, the AhR receptor influences various cell types within organoids, including intestinal stem cells (ISCs), Paneth cells, and enterocytes, to promote their growth and development, suggesting that AhR has a broad impact on intestinal health. In conclusion, our study demonstrated the ability of LGG to modulate intestinal immunity and effectively prevent PEDV infection in piglets. These findings highlight the potential application of LGG as a preventive measure against viral infections in livestock.IMPORTANCEWe observed high expression of the AhR receptor on pig and human ILC3s, although its expression was negligible in mouse ILC3s. ILC3s are closely related to the gut microbiota, particularly the secretion of IL-22 stimulated by microbial signals, which plays a crucial regulatory role in intestinal immunity. In our study, we found that metabolites produced by beneficial gut bacteria interact with ILC3s through AhR, thereby maintaining intestinal immune homeostasis in pigs. Moreover, LGG feeding can enhance the activation of ILC3s and promote IL-22 secretion in the intestines of piglets, ultimately preventing PEDV infection.

15.
Am J Pathol ; 194(5): 796-809, 2024 May.
Article in English | MEDLINE | ID: mdl-38395146

ABSTRACT

α-Synuclein (α-Syn) is a key determinator of Parkinson disease (PD) pathology, but synapse and microcircuit pathologies in the retina underlying visual dysfunction are poorly understood. Herein, histochemical and ultrastructural analyses and ophthalmologic measurements in old transgenic M83 PD model (mice aged 16 to 18 months) indicated that abnormal α-Syn aggregation in the outer plexiform layer (OPL) was associated with degeneration in the C-terminal binding protein 2 (CtBP2)+ ribbon synapses of photoreceptor terminals and protein kinase C alpha (PKCα)+ rod bipolar cell terminals, whereas α-Syn aggregates in the inner retina correlated with the reduction and degeneration of tyrosine hydroxylase- and parvalbumin-positive amacrine cells. Phosphorylated Ser129 α-synuclein expression was strikingly restricted in the OPL, with the most severe degenerations in the entire retina, including mitochondrial degeneration and loss of ribbon synapses in 16- to 18-month-old mice. These synapse- and microcircuit-specific deficits of the rod pathway at the CtBP2+ rod terminals and PKCα+ rod bipolar and amacrine cells were associated with attenuated a- and b-wave amplitudes and oscillatory potentials on the electroretinogram. They were also associated with the impairment of visual functions, including reduced contrast sensitivity and impairment of the middle range of spatial frequencies. Collectively, these findings demonstrate that α-Syn aggregates cause the synapse- and microcircuit-specific deficits of the rod pathway and the most severe damage to the OPL, providing the retinal synaptic and microcircuit basis for visual dysfunctions in PD.


Subject(s)
Protein Kinase C-alpha , alpha-Synuclein , Animals , Mice , alpha-Synuclein/metabolism , Amacrine Cells/metabolism , Protein Kinase C-alpha/metabolism , Retina/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Synapses/metabolism , Transcription Factors/metabolism
16.
Nat Chem Biol ; 19(4): 468-477, 2023 04.
Article in English | MEDLINE | ID: mdl-36635564

ABSTRACT

Membrane dynamics are important to the integrity and function of mitochondria. Defective mitochondrial fusion underlies the pathogenesis of multiple diseases. The ability to target fusion highlights the potential to fight life-threatening conditions. Here we report a small molecule agonist, S89, that specifically promotes mitochondrial fusion by targeting endogenous MFN1. S89 interacts directly with a loop region in the helix bundle 2 domain of MFN1 to stimulate GTP hydrolysis and vesicle fusion. GTP loading or competition by S89 dislodges the loop from the GTPase domain and unlocks the molecule. S89 restores mitochondrial and cellular defects caused by mitochondrial DNA mutations, oxidative stress inducer paraquat, ferroptosis inducer RSL3 or CMT2A-causing mutations by boosting endogenous MFN1. Strikingly, S89 effectively eliminates ischemia/reperfusion (I/R)-induced mitochondrial damage and protects mouse heart from I/R injury. These results reveal the priming mechanism for MFNs and provide a therapeutic strategy for mitochondrial diseases when additional mitochondrial fusion is beneficial.


Subject(s)
Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins , Mice , Animals , Mitochondrial Membrane Transport Proteins/analysis , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondria , Hydrolysis , Guanosine Triphosphate/analysis , Guanosine Triphosphate/pharmacology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/analysis , Mitochondrial Proteins/pharmacology
17.
Nature ; 576(7785): 158-162, 2019 12.
Article in English | MEDLINE | ID: mdl-31776509

ABSTRACT

Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis1,2. Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.


Subject(s)
Chromatin , G1 Phase , Mitosis , Animals , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Mice , Cohesins
18.
Nature ; 574(7779): 575-580, 2019 10.
Article in English | MEDLINE | ID: mdl-31645732

ABSTRACT

The Warburg effect, which originally described increased production of lactate in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, polarization of macrophages and activation of T cells. This phenomenon is intimately linked to several diseases including neoplasia, sepsis and autoimmune diseases1,2. Lactate, which is converted from pyruvate in tumour cells, is widely known as an energy source and metabolic by-product. However, its non-metabolic functions in physiology and disease remain unknown. Here we show that lactate-derived lactylation of histone lysine residues serves as an epigenetic modification that directly stimulates gene transcription from chromatin. We identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce the production of lactate by glycolysis, and this acts as a precursor that stimulates histone lactylation. Using M1 macrophages that have been exposed to bacteria as a model system, we show that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, increased histone lactylation induces homeostatic genes that are involved in wound healing, including Arg1. Collectively, our results suggest that an endogenous 'lactate clock' in bacterially challenged M1 macrophages turns on gene expression to promote homeostasis. Histone lactylation thus represents an opportunity to improve our understanding of the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.


Subject(s)
Epigenesis, Genetic , Glycolysis/genetics , Histones/chemistry , Histones/metabolism , Lactic Acid/metabolism , Acetylation , Amino Acid Sequence , Animals , Cell Line, Tumor , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Homeostasis , Humans , Hypoxia/metabolism , Lysine/chemistry , Lysine/metabolism , Macrophages/metabolism , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Reproducibility of Results , Transcription, Genetic
19.
Proc Natl Acad Sci U S A ; 119(36): e2117396119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037337

ABSTRACT

Ferroptosis is an iron-dependent programmed necrosis characterized by glutathione (GSH) depletion and lipid peroxidation (LPO). Armed with both the pro- and antiferroptosis machineries, mitochondria play a central role in ferroptosis. However, how mitochondria sense the stress to activate ferroptosis under (patho-)physiological settings remains incompletely understood. Here, we show that FUN14 domain-containing 2, also known as HCBP6 (FUNDC2), a highly conserved and ubiquitously expressed mitochondrial outer membrane protein, regulates ferroptosis and contributes to doxorubicin (DOX)-induced cardiomyopathy. We showed that knockout of FUNDC2 protected mice from DOX-induced cardiac injury by preventing ferroptosis. Mechanistic studies reveal that FUNDC2 interacts with SLC25A11, the mitochondrial glutathione transporter, to regulate mitoGSH levels. Specifically, knockdown of SLC25A11 in FUNDC2-knockout (KO) cells reduced mitoGSH and augmented erasin-induced ferroptosis. FUNDC2 also affected the stability of both SLC25A11 and glutathione peroxidase 4 (GPX4), key regulators for ferroptosis. Our results demonstrate that FUNDC2 modulates ferroptotic stress via regulating mitoGSH and further support a therapeutic strategy of cardioprotection by preventing mitoGSH depletion and ferroptosis.


Subject(s)
Cardiomyopathies , Ferroptosis , Animals , Cardiomyopathies/metabolism , Doxorubicin/metabolism , Ferroptosis/genetics , Glutathione/metabolism , Lipid Peroxidation , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondrial Membranes/metabolism
20.
Proc Natl Acad Sci U S A ; 119(32): e2119850119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35925886

ABSTRACT

Cochlear hair cells (HCs) in the inner ear are responsible for sound detection. For HC fate specification, the master transcription factor Atoh1 is both necessary and sufficient. Atoh1 expression is dynamic and tightly regulated during development, but the cis-regulatory elements mediating this regulation remain unresolved. Unexpectedly, we found that deleting the only recognized Atoh1 enhancer, defined here as Eh1, failed to impair HC development. By using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we discovered two additional Atoh1 enhancers: Eh2 and Eh3. Notably, Eh2 deletion was sufficient for impairing HC development, and concurrent deletion of Eh1 and Eh2 or all three enhancers resulted in nearly complete absence of HCs. Lastly, we showed that Atoh1 binds to all three enhancers, consistent with its autoregulatory function. Our findings reveal that the cooperative action of three distinct enhancers underpins effective Atoh1 regulation during HC development, indicating potential therapeutic approaches for HC regeneration.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Ear, Inner , Enhancer Elements, Genetic , Hair Cells, Auditory , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Differentiation , Cochlea/cytology , Ear, Inner/cytology , Hair Cells, Auditory/physiology
SELECTION OF CITATIONS
SEARCH DETAIL