Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.613
Filter
1.
Cell ; 187(6): 1387-1401.e13, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38412859

ABSTRACT

The Crumbs homolog 1 (CRB1) gene is associated with retinal degeneration, most commonly Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Here, we demonstrate that murine retinas bearing the Rd8 mutation of Crb1 are characterized by the presence of intralesional bacteria. While normal CRB1 expression was enriched in the apical junctional complexes of retinal pigment epithelium and colonic enterocytes, Crb1 mutations dampened its expression at both sites. Consequent impairment of the outer blood retinal barrier and colonic intestinal epithelial barrier in Rd8 mice led to the translocation of intestinal bacteria from the lower gastrointestinal (GI) tract to the retina, resulting in secondary retinal degeneration. Either the depletion of bacteria systemically or the reintroduction of normal Crb1 expression colonically rescued Rd8-mutation-associated retinal degeneration without reversing the retinal barrier breach. Our data elucidate the pathogenesis of Crb1-mutation-associated retinal degenerations and suggest that antimicrobial agents have the potential to treat this devastating blinding disease.


Subject(s)
Nerve Tissue Proteins , Retinal Degeneration , Animals , Mice , Bacterial Translocation , Eye Proteins/genetics , Leber Congenital Amaurosis/genetics , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Retina/metabolism , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
2.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608654

ABSTRACT

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Subject(s)
Cell Differentiation , Transcription Factors , Humans , Chromatin , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Atlases as Topic
3.
Cell ; 184(9): 2441-2453.e18, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33770501

ABSTRACT

Tn7-like transposons have co-opted CRISPR systems, including class 1 type I-F, I-B, and class 2 type V-K. Intriguingly, although these CRISPR-associated transposases (CASTs) undergo robust CRISPR RNA (crRNA)-guided transposition, they are almost never found in sites targeted by the crRNAs encoded by the cognate CRISPR array. To understand this paradox, we investigated CAST V-K and I-B systems and found two distinct modes of transposition: (1) crRNA-guided transposition and (2) CRISPR array-independent homing. We show distinct CAST systems utilize different molecular mechanisms to target their homing site. Type V-K CAST systems use a short, delocalized crRNA for RNA-guided homing, whereas type I-B CAST systems, which contain two distinct target selector proteins, use TniQ for RNA-guided DNA transposition and TnsD for homing to an attachment site. These observations illuminate a key step in the life cycle of CAST systems and highlight the diversity of molecular mechanisms mediating transposon homing.


Subject(s)
Bacteria/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , DNA Transposable Elements/physiology , DNA, Bacterial/metabolism , RNA, Guide, Kinetoplastida , Transposases/metabolism , Bacteria/metabolism , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Bacterial/genetics , Gene Editing , Recombination, Genetic , Transposases/genetics
4.
Cell ; 184(11): 3056-3074.e21, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33932339

ABSTRACT

The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1ß (IL-1ß) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.


Subject(s)
Choroid Plexus/embryology , Choroid Plexus/metabolism , Age Factors , Aging/physiology , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain/physiology , Brain Diseases/genetics , Brain Diseases/physiopathology , Cell Differentiation/genetics , Cell Lineage/genetics , Choroid Plexus/physiology , Epithelial Cells/metabolism , Female , Male , Mice/embryology , Mice, Inbred C57BL , Signal Transduction , Single-Cell Analysis
5.
Nat Immunol ; 24(8): 1382-1390, 2023 08.
Article in English | MEDLINE | ID: mdl-37500887

ABSTRACT

Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Microglia , Alzheimer Disease/genetics , Brain
6.
Cell ; 181(1): 136-150, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243786

ABSTRACT

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-based biotechnologies has revolutionized the life sciences and introduced new therapeutic modalities with the potential to treat a wide range of diseases. Here, we describe CRISPR-based strategies to improve human health, with an emphasis on the delivery of CRISPR therapeutics directly into the human body using adeno-associated virus (AAV) vectors. We also discuss challenges facing broad deployment of CRISPR-based therapeutics and highlight areas where continued discovery and technological development can further advance these revolutionary new treatments.


Subject(s)
CRISPR-Cas Systems , Dependovirus/genetics , Gene Editing/methods , Genetic Therapy/methods , Genetic Vectors/therapeutic use , Animals , Humans
7.
Cell ; 178(1): 229-241.e16, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31230717

ABSTRACT

Analyzing the spatial organization of molecules in cells and tissues is a cornerstone of biological research and clinical practice. However, despite enormous progress in molecular profiling of cellular constituents, spatially mapping them remains a disjointed and specialized machinery-intensive process, relying on either light microscopy or direct physical registration. Here, we demonstrate DNA microscopy, a distinct imaging modality for scalable, optics-free mapping of relative biomolecule positions. In DNA microscopy of transcripts, transcript molecules are tagged in situ with randomized nucleotides, labeling each molecule uniquely. A second in situ reaction then amplifies the tagged molecules, concatenates the resulting copies, and adds new randomized nucleotides to uniquely label each concatenation event. An algorithm decodes molecular proximities from these concatenated sequences and infers physical images of the original transcripts at cellular resolution with precise sequence information. Because its imaging power derives entirely from diffusive molecular dynamics, DNA microscopy constitutes a chemically encoded microscopy system.


Subject(s)
DNA/chemistry , Microscopy, Fluorescence/methods , Polymerase Chain Reaction , Algorithms , Base Sequence , Cell Line , Facilitated Diffusion/genetics , Female , Fluorescent Dyes/chemistry , Humans , Nucleotides/chemistry , Photons , Staining and Labeling/methods
8.
Cell ; 179(3): 787-799.e17, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31626775

ABSTRACT

Genetic screens are critical for the systematic identification of genes underlying cellular phenotypes. Pooling gene perturbations greatly improves scalability but is not compatible with imaging of complex and dynamic cellular phenotypes. Here, we introduce a pooled approach for optical genetic screens in mammalian cells. We use targeted in situ sequencing to demultiplex a library of genetic perturbations following image-based phenotyping. We screened a set of 952 genes across millions of cells for involvement in nuclear factor κB (NF-κB) signaling by imaging the translocation of RelA (p65) to the nucleus. Screening at a single time point across 3 cell lines recovered 15 known pathway components, while repeating the screen with live-cell imaging revealed a role for Mediator complex subunits in regulating the duration of p65 nuclear retention. These results establish a highly multiplexed approach to image-based screens of spatially and temporally defined phenotypes with pooled libraries.


Subject(s)
Genetic Testing , Genomics , NF-kappa B/genetics , Transcription Factor RelA/genetics , Animals , CRISPR-Cas Systems , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Humans , Mediator Complex/genetics , RNA, Guide, Kinetoplastida/genetics
10.
Cell ; 168(5): 946-946.e1, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235204

ABSTRACT

Class 1 CRISPR-Cas systems are characterized by effector modules consisting of multiple subunits. Class 1 systems comprise about 90% of all CRISPR-Cas loci identified in bacteria and archaea and can target both DNA and RNA.


Subject(s)
CRISPR-Cas Systems , Prokaryotic Cells/immunology , Clustered Regularly Interspaced Short Palindromic Repeats , Evolution, Molecular , Prokaryotic Cells/classification
11.
Cell ; 168(1-2): 328-328.e1, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086097

ABSTRACT

Class 2 CRISPR-Cas systems are characterized by effector modules consisting of single, large, multidomain proteins that appear to have been derived from mobile genetic elements. Some Class 2 effector proteins, such as Cas9 and Cas12a (Cpf1), have been successfully repurposed for genome engineering.


Subject(s)
Bacteria/immunology , CRISPR-Cas Systems , Bacteria/classification , Bacteria/genetics , Endonucleases/chemistry , Endonucleases/genetics , Gene Editing
12.
Cell ; 168(5): 830-842.e7, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235197

ABSTRACT

De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology.


Subject(s)
Chromosome Aberrations , DNA Copy Number Variations , Genetic Diseases, Inborn/embryology , Genetic Diseases, Inborn/genetics , Genomic Instability , Mutation , Chromosome Breakpoints , Chromosome Duplication , DNA Replication , Embryonic Development , Female , Gametogenesis , Humans , Male
13.
Mol Cell ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39111310

ABSTRACT

Canonical prokaryotic type I CRISPR-Cas adaptive immune systems contain a multicomponent effector complex called Cascade, which degrades large stretches of DNA via Cas3 helicase-nuclease activity. Recently, a highly precise subtype I-F1 CRISPR-Cas system (HNH-Cascade) was found that lacks Cas3, the absence of which is compensated for by the insertion of an HNH endonuclease domain in the Cas8 Cascade component. Here, we describe the cryo-EM structure of Selenomonas sp. HNH-Cascade (SsCascade) in complex with target DNA and characterize its mechanism of action. The Cascade scaffold is complemented by the HNH domain, creating a ring-like structure in which the unwound target DNA is precisely cleaved. This structure visualizes a unique hybrid of two extensible biological systems-Cascade, an evolutionary platform for programmable DNA effectors, and an HNH nuclease, an adaptive domain with a spectrum of enzymatic activity.

14.
Cell ; 165(4): 949-62, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27114038

ABSTRACT

Cpf1 is an RNA-guided endonuclease of a type V CRISPR-Cas system that has been recently harnessed for genome editing. Here, we report the crystal structure of Acidaminococcus sp. Cpf1 (AsCpf1) in complex with the guide RNA and its target DNA at 2.8 Å resolution. AsCpf1 adopts a bilobed architecture, with the RNA-DNA heteroduplex bound inside the central channel. The structural comparison of AsCpf1 with Cas9, a type II CRISPR-Cas nuclease, reveals both striking similarity and major differences, thereby explaining their distinct functionalities. AsCpf1 contains the RuvC domain and a putative novel nuclease domain, which are responsible for cleaving the non-target and target strands, respectively, and for jointly generating staggered DNA double-strand breaks. AsCpf1 recognizes the 5'-TTTN-3' protospacer adjacent motif by base and shape readout mechanisms. Our findings provide mechanistic insights into RNA-guided DNA cleavage by Cpf1 and establish a framework for rational engineering of the CRISPR-Cpf1 toolbox.


Subject(s)
Acidaminococcus/chemistry , Bacterial Proteins/chemistry , DNA/chemistry , Genetic Techniques , RNA, Guide, Kinetoplastida/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , DNA/metabolism , Models, Molecular , Nucleic Acid Heteroduplexes/metabolism , RNA, Guide, Kinetoplastida/metabolism
15.
Cell ; 164(5): 950-61, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26875867

ABSTRACT

The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5'-NGG-3' PAM, and used the structural information to create a variant that can recognize the more relaxed 5'-YG-3' PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5'-YG-3' PAM, thus expanding the target space of the CRISPR-Cas9 toolbox.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Cas Systems , Endonucleases/chemistry , Francisella/enzymology , Genetic Engineering/methods , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blastocyst/metabolism , CRISPR-Associated Protein 9 , Crystallography, X-Ray , Embryo, Mammalian/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Mice , Microinjections/methods , Models, Molecular , RNA, Guide, Kinetoplastida/genetics
16.
Mol Cell ; 83(12): 2122-2136.e10, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37267947

ABSTRACT

To spread, transposons must integrate into target sites without disruption of essential genes while avoiding host defense systems. Tn7-like transposons employ multiple mechanisms for target-site selection, including protein-guided targeting and, in CRISPR-associated transposons (CASTs), RNA-guided targeting. Combining phylogenomic and structural analyses, we conducted a broad survey of target selectors, revealing diverse mechanisms used by Tn7 to recognize target sites, including previously uncharacterized target-selector proteins found in newly discovered transposable elements (TEs). We experimentally characterized a CAST I-D system and a Tn6022-like transposon that uses TnsF, which contains an inactivated tyrosine recombinase domain, to target the comM gene. Additionally, we identified a non-Tn7 transposon, Tsy, encoding a homolog of TnsF with an active tyrosine recombinase domain, which we show also inserts into comM. Our findings show that Tn7 transposons employ modular architecture and co-opt target selectors from various sources to optimize target selection and drive transposon spread.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , DNA Transposable Elements , Plasmids , DNA Transposable Elements/genetics , Recombinases/genetics , Tyrosine/genetics
17.
Cell ; 162(5): 1113-26, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26317473

ABSTRACT

The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets with a protospacer adjacent motif (PAM) and complementarity to the guide RNA. Recently, we harnessed Staphylococcus aureus Cas9 (SaCas9), which is significantly smaller than Streptococcus pyogenes Cas9 (SpCas9), to facilitate efficient in vivo genome editing. Here, we report the crystal structures of SaCas9 in complex with a single guide RNA (sgRNA) and its double-stranded DNA targets, containing the 5'-TTGAAT-3' PAM and the 5'-TTGGGT-3' PAM, at 2.6 and 2.7 Å resolutions, respectively. The structures revealed the mechanism of the relaxed recognition of the 5'-NNGRRT-3' PAM by SaCas9. A structural comparison of SaCas9 with SpCas9 highlighted both structural conservation and divergence, explaining their distinct PAM specificities and orthologous sgRNA recognition. Finally, we applied the structural information about this minimal Cas9 to rationally design compact transcriptional activators and inducible nucleases, to further expand the CRISPR-Cas9 genome editing toolbox.


Subject(s)
Bacterial Proteins/chemistry , Staphylococcus aureus/enzymology , Amino Acid Sequence , CRISPR-Cas Systems , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , Genetic Engineering , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism , Sequence Alignment , Streptococcus pyogenes/enzymology
18.
Cell ; 160(6): 1246-60, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25748654

ABSTRACT

Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR/Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single-guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late-stage primary tumors were found to target a small set of genes, suggesting that specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top-scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Non-Small-Cell Lung/genetics , Gene Knockout Techniques , Lung Neoplasms/genetics , Neoplasm Metastasis/genetics , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Genome-Wide Association Study , Humans , Lung Neoplasms/pathology , Mice , RNA, Guide, Kinetoplastida
19.
Cell ; 162(3): 675-86, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26189680

ABSTRACT

Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells and provide a genetic approach for dissection of mammalian cell circuits.


Subject(s)
CRISPR-Cas Systems , Genetic Techniques , Immunity, Innate , Animals , Bone Marrow Cells/immunology , Cell Differentiation , Cell Survival , Dendritic Cells/cytology , Dendritic Cells/immunology , Gene Knockout Techniques , Gene Regulatory Networks , Hexosyltransferases/metabolism , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/immunology
20.
Cell ; 163(3): 759-71, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26422227

ABSTRACT

The microbial adaptive immune system CRISPR mediates defense against foreign genetic elements through two classes of RNA-guided nuclease effectors. Class 1 effectors utilize multi-protein complexes, whereas class 2 effectors rely on single-component effector proteins such as the well-characterized Cas9. Here, we report characterization of Cpf1, a putative class 2 CRISPR effector. We demonstrate that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif. Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, we identified two candidate enzymes from Acidaminococcus and Lachnospiraceae, with efficient genome-editing activity in human cells. Identifying this mechanism of interference broadens our understanding of CRISPR-Cas systems and advances their genome editing applications.


Subject(s)
CRISPR-Cas Systems , Endonucleases/genetics , Francisella/genetics , Genetic Engineering/methods , Amino Acid Sequence , Endonucleases/chemistry , Francisella/enzymology , HEK293 Cells , Humans , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Guide, Kinetoplastida/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL