Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.170
Filter
1.
PLoS Pathog ; 20(1): e1011988, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289966

ABSTRACT

Autophagy and Cell wall integrity (CWI) signaling are critical stress-responsive processes during fungal infection of host plants. In the rice blast fungus Magnaporthe oryzae, autophagy-related (ATG) proteins phosphorylate CWI kinases to regulate virulence; however, how autophagy interplays with CWI signaling to coordinate such regulation remains unknown. Here, we have identified the phosphorylation of ATG protein MoAtg4 as an important process in the coordination between autophagy and CWI in M. oryzae. The ATG kinase MoAtg1 phosphorylates MoAtg4 to inhibit the deconjugation and recycling of the key ATG protein MoAtg8. At the same time, MoMkk1, a core kinase of CWI, also phosphorylates MoAtg4 to attenuate the C-terminal cleavage of MoAtg8. Significantly, these two phosphorylation events maintain proper autophagy levels to coordinate the development and pathogenicity of the rice blast fungus.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Phosphorylation , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Magnaporthe/metabolism , Autophagy , Cell Wall/metabolism , Oryza/microbiology , Plant Diseases/microbiology , Gene Expression Regulation, Fungal
2.
Circ Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957991

ABSTRACT

BACKGROUND: Cerebral vascular malformations (CCMs) are primarily found within the brain, where they result in increased risk for stroke, seizures, and focal neurological deficits. The unique feature of the brain vasculature is the blood-brain barrier formed by the brain neurovascular unit. Recent studies suggest that loss of CCM genes causes disruptions of blood-brain barrier integrity as the inciting events for CCM development. CCM lesions are proposed to be initially derived from a single clonal expansion of a subset of angiogenic venous capillary endothelial cells (ECs) and respective resident endothelial progenitor cells (EPCs). However, the critical signaling events in the subclass of brain ECs/EPCs for CCM lesion initiation and progression are unclear. METHODS: Brain EC-specific CCM3-deficient (Pdcd10BECKO) mice were generated by crossing Pdcd10fl/fl mice with Mfsd2a-CreERT2 mice. Single-cell RNA-sequencing analyses were performed by the chromium single-cell platform (10× genomics). Cell clusters were annotated into EC subtypes based on visual inspection and GO analyses. Cerebral vessels were visualized by 2-photon in vivo imaging and tissue immunofluorescence analyses. Regulation of mTOR (mechanistic target of rapamycin) signaling by CCM3 and Cav1 (caveolin-1) was performed by cell biology and biochemical approaches. RESULTS: Single-cell RNA-sequencing analyses from P10 Pdcd10BECKO mice harboring visible CCM lesions identified upregulated CCM lesion signature and mitotic EC clusters but decreased blood-brain barrier-associated EC clusters. However, a unique EPC cluster with high expression levels of stem cell markers enriched with mTOR signaling was identified from early stages of the P6 Pdcd10BECKO brain. Indeed, mTOR signaling was upregulated in both mouse and human CCM lesions. Genetic deficiency of Raptor (regulatory-associated protein of mTOR), but not of Rictor (rapamycin-insensitive companion of mTOR), prevented CCM lesion formation in the Pdcd10BECKO model. Importantly, the mTORC1 (mTOR complex 1) pharmacological inhibitor rapamycin suppressed EPC proliferation and ameliorated CCM pathogenesis in Pdcd10BECKO mice. Mechanistic studies suggested that Cav1/caveolae increased in CCM3-depleted EPC-mediated intracellular trafficking and complex formation of the mTORC1 signaling proteins. CONCLUSIONS: CCM3 is critical for maintaining blood-brain barrier integrity and CCM3 loss-induced mTORC1 signaling in brain EPCs initiates and facilitates CCM pathogenesis.

3.
PLoS Genet ; 19(5): e1010748, 2023 05.
Article in English | MEDLINE | ID: mdl-37186579

ABSTRACT

The rice blast fungus Magnaporthe oryzae forms specialized infectious structures called appressoria that breach host cells to initiate infection. Previous studies demonstrated that the regulator of G-protein signaling (RGS)-like protein MoRgs7 undergoes endocytosis upon fungal sensing of hydrophobic environmental cues to activate cAMP signaling required for appressorium formation. However, the mechanism by which MoRgs7 internalizes and its fate remains undetermined. We here show that MoSep1, a conserved protein kinase of Mitotic Exit Network (MEN), phosphorylates MoRgs7 to regulate its function. MoRgs7 phosphorylation determines its interaction with MoCrn1, a coronin-like actin-binding protein homolog that also modulates the internalization of MoRgs7. Importantly, the endocytic transport of MoRgs7 is critical for its GTPase-activating protein (GAP) function important in cAMP signaling. Together, our findings revealed a novel mechanism by which M. oryzae activates MoRgs7-mediated hydrophobic cue-sensing signal transduction involving protein phosphorylation and endocytic transport to govern appressorium formation and fungal pathogenicity.


Subject(s)
Magnaporthe , Oryza , Humans , Phosphorylation , Cues , Magnaporthe/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Fungal
4.
PLoS Genet ; 19(9): e1010927, 2023 09.
Article in English | MEDLINE | ID: mdl-37733784

ABSTRACT

The emergence of fungicide resistance severely threatens crop production by limiting the availability and application of established fungicides. Therefore, it is urgent to identify new fungicidal targets for controlling plant diseases. Here, we characterized the function of a conserved homoserine O-acetyltransferase (HOA) from the rice blast fungus Magnaporthe oryzae that could serve as the candidate antifungal target. Deletion of the MoMET2 and MoCYS2 genes encoding HOAs perturbed the biosynthesis of methionine and S-adenyl methionine, a methyl group donor for epigenetic modifications, and severely attenuated the development and virulence of M. oryzae. The ∆Momet2 mutant is significantly increased in 5-methylcytosine (5mC) modification that represses the expression of genes required for pathogenicity, including MoGLIK and MoCDH-CYT. We further showed that host-induced gene silencing (HIGS) targeting MoMET2 and MoCYS2 effectively controls rice blasts. Our studies revealed the importance of HOA in the development and virulence of M. oryzae, which suggests the potential feasibility of HOA as new targets for novel anti-rice blast measurements.


Subject(s)
Magnaporthe , Oryza , Virulence/genetics , Oryza/metabolism , Methionine/genetics , Gene Expression , Plant Diseases/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism
5.
PLoS Pathog ; 19(4): e1011251, 2023 04.
Article in English | MEDLINE | ID: mdl-37011084

ABSTRACT

Magnaporthe oryzae causes rice blasts posing serious threats to food security worldwide. During infection, M. oryzae utilizes several transmembrane receptor proteins that sense cell surface cues to induce highly specialized infectious structures called appressoria. However, little is known about the mechanisms of intracellular receptor tracking and their function. Here, we described that disrupting the coat protein complex II (COPII) cargo protein MoErv14 severely affects appressorium formation and pathogenicity as the ΔMoerv14 mutant is defective not only in cAMP production but also in the phosphorylation of the mitogen-activated protein kinase (MAPK) MoPmk1. Studies also showed that either externally supplementing cAMP or maintaining MoPmk1 phosphorylation suppresses the observed defects in the ΔMoerv14 strain. Importantly, MoErv14 is found to regulate the transport of MoPth11, a membrane receptor functioning upstream of G-protein/cAMP signaling, and MoWish and MoSho1 function upstream of the Pmk1-MAPK pathway. In summary, our studies elucidate the mechanism by which the COPII protein MoErv14 plays an important function in regulating the transport of receptors involved in the appressorium formation and virulence of the blast fungus.


Subject(s)
Magnaporthe , Oryza , Virulence , Magnaporthe/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Cell Membrane/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Oryza/microbiology , Plant Diseases/microbiology , Spores, Fungal/metabolism
6.
Hum Genomics ; 18(1): 42, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659038

ABSTRACT

BACKGROUND: The integration of transcriptomic, proteomic, druggable genetic and metabolomic association studies facilitated a comprehensive investigation of molecular features and shared pathways for cancers' development and progression. METHODS: Comprehensive approaches consisting of transcriptome-wide association studies (TWAS), proteome-wide association studies (PWAS), summary-data-based Mendelian randomization (SMR) and MR were performed to identify genes significantly associated with cancers. The results identified in above analyzes were subsequently involved in phenotype scanning and enrichment analyzes to explore the possible health effects and shared pathways. Additionally, we also conducted MR analysis   to investigate metabolic pathways related to cancers. RESULTS: Totally 24 genes (18 transcriptomic, 1 proteomic and 5 druggable genetic) showed significant associations with cancers risk. All genes identified in multiple methods were mainly enriched in nuclear factor erythroid 2-related factor 2 (NRF2) pathway. Additionally, biosynthesis of ubiquinol and urate were found to play an important role in gastrointestinal tumors. CONCLUSIONS: A set of putatively causal genes and pathways relevant to cancers were identified in this study, shedding light on the shared biological processes for tumorigenesis and providing compelling genetic evidence to prioritize anti-cancer drugs development.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Genome-Wide Association Study , Proteomics , Transcriptome/genetics , Mendelian Randomization Analysis , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Metabolomics/methods , Metabolic Networks and Pathways/genetics , Genetic Predisposition to Disease , Multiomics
7.
EMBO Rep ; 24(12): e56815, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37846480

ABSTRACT

HACE1 is a HECT family E3 ubiquitin-protein ligase with broad but incompletely understood tumor suppressor activity. Here, we report a previously unrecognized link between HACE1 and signaling complexes containing mammalian target of rapamycin (mTOR). HACE1 blocks mTORC1 and mTORC2 activities by reducing mTOR stability in an E3 ligase-dependent manner. Mechanistically, HACE1 binds to and ubiquitylates Ras-related C3 botulinum toxin substrate 1 (RAC1) when RAC1 is associated with mTOR complexes, including at focal adhesions, leading to proteasomal degradation of RAC1. This in turn decreases the stability of mTOR to reduce mTORC1 and mTORC2 activity. HACE1 deficient cells show enhanced mTORC1/2 activity, which is reversed by chemical or genetic RAC1 inactivation but not in cells expressing the HACE1-insensitive mutant, RAC1K147R . In vivo, Rac1 deletion reverses enhanced mTOR expression in KRasG12D -driven lung tumors of Hace1-/- mice. HACE1 co-localizes with mTOR and RAC1, resulting in RAC1-dependent loss of mTOR protein stability. Together, our data demonstrate that HACE1 destabilizes mTOR by targeting RAC1 within mTOR-associated complexes, revealing a unique ubiquitin-dependent process to control the activity of mTOR signaling complexes.


Subject(s)
Ubiquitin-Protein Ligases , Animals , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , TOR Serine-Threonine Kinases , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
8.
J Biol Chem ; 299(6): 104829, 2023 06.
Article in English | MEDLINE | ID: mdl-37201586

ABSTRACT

Hypoxia-inducible factor-1 (HIF-1) is a critical transcription factor that regulates the expression of genes involved in cellular adaptation to low oxygen levels. Aberrant regulation of the HIF-1 signaling pathway is linked to various human diseases. Previous studies have established that HIF-1α is rapidly degraded in a von Hippel-Lindau protein (pVHL)-dependent manner under normoxic conditions. In this study, we find that pVHL binding protein 1 (VBP1) is a negative regulator of HIF-1α but not HIF-2α using zebrafish as an in vivo model and in vitro cell culture models. Deletion of vbp1 in zebrafish caused Hif-1α accumulation and upregulation of Hif target genes. Moreover, vbp1 was involved in the induction of hematopoietic stem cells (HSCs) under hypoxic conditions. However, VBP1 interacted with and promoted the degradation of HIF-1α in a pVHL-independent manner. Mechanistically, we identify the ubiquitin ligase CHIP and HSP70 as new VBP1 binding partners and demonstrate that VBP1 negatively regulated CHIP and facilitated CHIP-mediated degradation of HIF-1α. In patients with clear cell renal cell carcinoma (ccRCC), lower VBP1 expression was associated with worse survival outcomes. In conclusion, our results link VBP1 with CHIP stability and provide insights into underlying molecular mechanisms of HIF-1α-driven pathological processes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Zebrafish/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Transcription Factors/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cytoskeletal Proteins , Molecular Chaperones
9.
Mol Plant Microbe Interact ; 37(4): 407-415, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38171376

ABSTRACT

Mitochondria are highly dynamic organelles that constantly change their morphology to adapt to the cellular environment through fission and fusion, which is critical for a cell to maintain normal cellular functions. Despite the significance of this process in the development and pathogenicity of the rice blast fungus Magnaporthe oryzae, the underlying mechanism remains largely elusive. Here, we identified and characterized a mitochondrial outer membrane translocase, MoTom20, in M. oryzae. Targeted gene deletion revealed that MoTom20 plays an important role in vegetative growth, conidiogenesis, penetration, and infectious growth of M. oryzae. The growth rate, conidial production, appressorium turgor, and pathogenicity are decreased in the ΔMotom20 mutant compared with the wild-type and complemented strains. Further analysis revealed that MoTom20 localizes in mitochondrion and plays a key role in regulating mitochondrial fission and fusion balance, which is critical for infectious growth. Finally, we found that MoTom20 is involved in fatty-acid utilization, and its yeast homolog ScTom20 is able to rescue the defects of ΔMotom20 in mitochondrial morphology and pathogenicity. Overall, our data demonstrate that MoTom20 is a key regulator for mitochondrial morphology maintenance, which is important for infectious growth of the rice blast fungus M. oryzae. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fungal Proteins , Mitochondria , Oryza , Plant Diseases , Oryza/microbiology , Plant Diseases/microbiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Mitochondria/metabolism , Spores, Fungal/growth & development , Ascomycota/genetics , Ascomycota/pathogenicity , Gene Expression Regulation, Fungal , Mitochondrial Membranes/metabolism , Virulence , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Dynamics , Gene Deletion
10.
Immunology ; 172(4): 566-576, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38618995

ABSTRACT

The inflammatory response is tightly regulated to eliminate invading pathogens and avoid excessive production of inflammatory mediators and tissue damage. Caspase-8 is a cysteine protease that is involved in programmed cell death. Here we show the TRIF-RIPK1-Caspase-8 is required for LPS-induced CYLD degradation in macrophages. TRIF functions in the upstream of RIPK1. The homotypic interaction motif of TRIF and the death domain of RIPK1 are essential for Caspase-8 activation. Caspase-8 cleaves CYLD and the D235A mutant is resistant to the protease activity of Caspase-8. TRIF and RIPK1 serve as substrates of Capase-8 in vitro. cFLIP interacts with Caspase-8 to modulate its protease activity on CYLD and cell death. Deficiency in TRIF, Caspase-8 or CYLD can lead to a decrease or increase in the expression of genes encoding inflammatory cytokines. Together, the TRIF-Caspase-8 and CYLD play opposite roles in the regulation of TLR4 signalling.


Subject(s)
Adaptor Proteins, Vesicular Transport , Caspase 8 , Deubiquitinating Enzyme CYLD , Lipopolysaccharides , Receptor-Interacting Protein Serine-Threonine Kinases , Signal Transduction , Toll-Like Receptor 4 , Caspase 8/metabolism , Caspase 8/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Deubiquitinating Enzyme CYLD/metabolism , Deubiquitinating Enzyme CYLD/genetics , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Mice , Humans , Gene Expression Regulation , Macrophages/immunology , Macrophages/metabolism , Mice, Knockout , Mice, Inbred C57BL , Fas-Associated Death Domain Protein
11.
Genome Res ; 31(1): 121-130, 2021 01.
Article in English | MEDLINE | ID: mdl-33328166

ABSTRACT

The Cre/loxP system is a powerful tool for gene function study in vivo. Regulated expression of Cre recombinase mediates precise deletion of genetic elements in a spatially- and temporally-controlled manner. Despite the robustness of this system, it requires a great amount of effort to create a conditional knockout model for each individual gene of interest where two loxP sites must be simultaneously inserted in cis The current undertaking involves labor-intensive embryonic stem (ES) cell-based gene targeting and tedious micromanipulations of mouse embryos. The complexity of this workflow poses formidable technical challenges, thus limiting wider applications of conditional genetics. Here, we report an alternative approach to generate mouse loxP alleles by integrating a unique design of CRISPR donor with the new oviduct electroporation technique i-GONAD. Showing the potential and simplicity of this method, we created floxed alleles for five genes in one attempt with relatively low costs and a minimal equipment setup. In addition to the conditional alleles, constitutive knockout alleles were also obtained as byproducts of these experiments. Therefore, the wider applications of i-GONAD may promote gene function studies using novel murine models.


Subject(s)
Gonads , Alleles , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Targeting , Mice , Mice, Transgenic
12.
BMC Med ; 22(1): 245, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872207

ABSTRACT

BACKGROUND: Early-life cardiovascular risk factors (CVRFs) are known to be associated with target organ damage during adolescence and premature cardiovascular morbidity and mortality during adulthood. However, contemporary data describing whether the prevalence of CVRFs and treatment and control rates have changed are limited. This study aimed to examine the temporal trends in the prevalence, treatment, and control of CVRFs among US adolescents over the past 2 decades. METHODS: This is a serial cross-sectional study using data from nine National Health and Nutrition Examination Survey cycles (January 2001-March 2020). US adolescents (aged 12 to 19 years) with information regarding CVRFs (including hypertension, elevated blood pressure [BP], diabetes, prediabetes, hyperlipidemia, obesity, overweight, cigarette use, inactive physical activity, and poor diet quality) were included. Age-adjusted trends in CVRF prevalence, treatment, and control were examined. Joinpoint regression analysis was performed to estimate changes in the prevalence, treatment, and control over time. The variation by sociodemographic characteristics were also described. RESULTS: A total of 15,155 US adolescents aged 12 to 19 years (representing ≈ 32.4 million people) were included. From 2001 to March 2020, there was an increase in the prevalence of prediabetes (from 12.5% [95% confidence interval (CI), 10.2%-14.9%] to 37.6% [95% CI, 29.1%-46.2%]) and overweight/obesity (from 21.1% [95% CI, 19.3%-22.8%] to 24.8% [95% CI, 21.4%-28.2%]; from 16.0% [95% CI, 14.1%-17.9%] to 20.3% [95% CI, 17.9%-22.7%]; respectively), no improvement in the prevalence of elevated BP (from 10.4% [95% CI, 8.9%-11.8%] to 11.0% [95% CI, 8.7%-13.4%]), diabetes (from 0.7% [95% CI, 0.2%-1.2%] to 1.2% [95% CI, 0.3%-2.2%]), and poor diet quality (from 76.1% [95% CI, 74.0%-78.2%] to 71.7% [95% CI, 68.5%-74.9%]), and a decrease in the prevalence of hypertension (from 8.1% [95% CI, 6.9%-9.4%] to 5.5% [95% CI, 3.7%-7.3%]), hyperlipidemia (from 34.2% [95% CI, 30.9%-37.5%] to 22.8% [95% CI, 18.7%-26.8%]), cigarette use (from 18.0% [95% CI, 15.7%-20.3%] to 3.5% [95% CI, 2.0%-5.0%]), and inactive physical activity (from 83.0% [95% CI, 80.7%-85.3%] to 9.5% [95% CI, 4.2%-14.8%]). Sex and race/ethnicity affected the evolution of CVRF prevalence differently. Whilst treatment rates for hypertension and diabetes did not improve significantly (from 9.6% [95% CI, 3.5%-15.8%] to 6.0% [95% CI, 1.4%-10.6%]; from 51.0% [95% CI, 23.3%-78.7%] to 26.5% [95% CI, 0.0%-54.7%]; respectively), BP control was relatively stable (from 75.7% [95% CI, 56.8%-94.7%] to 73.5% [95% CI, 40.3%-100.0%]), while glycemic control improved to a certain extent, although it remained suboptimal (from 11.8% [95% CI, 0.0%-31.5%] to 62.7% [95% CI, 62.7%-62.7%]). CONCLUSIONS: From 2001 to March 2020, although prediabetes and overweight/obesity increased, hypertension, hyperlipidemia, cigarette use, and inactive physical activity decreased among US adolescents aged 12 to 19 years, whereas elevated BP, diabetes, and poor diet quality remained unchanged. There were disparities in CVRF prevalence and trends across sociodemographic subpopulations. While treatment and control rates for hypertension and diabetes plateaued, BP control were stable, and improved glycemic control was observed.


Subject(s)
Cardiovascular Diseases , Humans , Adolescent , Male , Female , Prevalence , Cross-Sectional Studies , Child , Young Adult , United States/epidemiology , Cardiovascular Diseases/epidemiology , Heart Disease Risk Factors , Nutrition Surveys , Risk Factors
13.
Small ; 20(8): e2304734, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37828641

ABSTRACT

Lithium metal-based rechargeable batteries are attracting increasing attention due to their high theoretical specific capacity and energy density. However, the dendrite growth leads to short circuits or even explosions and rapid depletion of active materials and electrolytes. Here, a functionalized and laminated scaffold (PVDF/TiO@C fiber) based on lithiophilic titanium monoxide is rationally designed to inhibit dendrite growth. Specifically, the bottom TiO@C fiber sublayer provides rich Li nucleation sites and facilitates the formation of stable solid electrolyte interphase. Together with the top lithiophobic PVDF sublayer, the prepared freestanding scaffold can effectively suppress the growth of Li dendrite and ensure stable Li plating/stripping. Based on the dendrite-free deposition, the Li/PVDF/TiO@ C fiber anode enables over 1000 h at a current density of 1 mA cm-2 in a symmetrical cell and delivers superior electrochemical performance in both Li || LFP and Li-S batteries. The functional laminated fiber scaffold design provides essential insights for obtaining high-performance lithium metal anodes.

14.
Clin Exp Immunol ; 217(1): 57-77, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38507548

ABSTRACT

The enzymatic core component of m6A writer complex, Mettl3, plays a crucial role in facilitating the development and progress of gastric and colorectal cancer (CRC). However, its underlying mechanism in regulating intestinal inflammation remains unclear and poorly investigated. First, the characteristics of Mettl3 expression in inflammatory bowel diseases (IBD) patients were examined. Afterward, we generated the mice line with intestinal epithelial cells (IECs)-specific deletion of Mettl3 verified by various experiments. We continuously recorded and compared the physiological status including survival rate etc. between the two groups. Subsequently, we took advantage of staining assays to analyze mucosal damage and immune infiltration of Mettl3WT and Mettl3KO primary IECs. Bulk RNA sequencing was used to pursuit the differential expression of genes (DEGs) and associated signaling pathways after losing Mettl3. Pyroptosis-related proteins were to determine whether cell death was caused by pyroptosis. Eventually, CyTOF was performed to probe the difference of CD45+ cells, especially CD3e+ T-cell clusters after losing Mettl3. In IBD patients, Mettl3 was highly expressed in the inner-nucleus of IECs while significantly decreased upon acute intestinal inflammation. IECs-specific deletion of Mettl3 KO mice triggered a wasting phenotype and developed spontaneous colitis. The survival rate, body weight, and intestinal length observed from 2 to 8 weeks of Mettl3KO mice were significantly lower than Mettl3WT mice. The degree of mucosal damage and immune infiltration in Mettl3KO were even more serious than in their WT littermate. Bulk RNA sequencing demonstrated that DEGs were dramatically enriched in NOD-signaling pathways due to the loss of Mettl3. The colonic epithelium was more prone to pyroptosis after losing Mettl3. Subsequently, CyTOF revealed that T cells have altered significantly in Mettl3KO. Furthermore, there was abnormal proliferation of CD4+ T and markedly exhaustion of CD8 + T in Mettl3KO mice. In severe IBD patients, Mettl3 is located in the inner-nucleus of IECs and declined when intestinal inflammation occurs. Subsequently, Mettl3 prevented mice from developing colitis.


Subject(s)
Colitis , Dysbiosis , Methyltransferases , Animals , Mice , Methyltransferases/genetics , Methyltransferases/metabolism , Colitis/immunology , Colitis/genetics , Dysbiosis/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Mice, Knockout , Humans , T-Lymphocytes/immunology , Disease Models, Animal , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Mice, Inbred C57BL , Male
15.
New Phytol ; 242(1): 211-230, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326975

ABSTRACT

Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Fungal Proteins/genetics , Fungal Proteins/metabolism , Oryza/metabolism , Phenazines/metabolism , Plant Diseases/genetics
16.
Plant Cell Environ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946254

ABSTRACT

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

17.
Opt Express ; 32(4): 6432-6445, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439346

ABSTRACT

In this paper, a liquid crystal (LC) tunable origami metastructure (OMS) designed for curvature sensing on cylindrical surfaces to measure their curvature is introduced. The LC employed is K15 (5CB) and the applicable band is 0.36∼23 GHz. When excited by electromagnetic waves (EMWs) within the 4∼16 GHz, the resonance frequency of the OMS shifts from 10.24 GHz to 10.144 GHz, corresponding to a change in absorption amplitude ranging from 0.773 to 0.920. In terms of curvature sensing, the detectable range of curvature spans from 0 to 0.327 mm-1. The maximum sensitivity (S) achieved for curvature measurement reaches 0.918/mm-1, accompanied by a quality factor (Q-factor) of 25.88. The proposed OMS embodies numerous excellent traits, including wide-range sensing capabilities and heightened S, promising for applications in bionic skin, smart robotics, and related fields.

18.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38565301

ABSTRACT

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Subject(s)
Carcinoma, Hepatocellular , Cytochrome P-450 CYP1A2 , DNA Methylation , Epigenesis, Genetic , Liver Neoplasms , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Sorafenib/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , DNA Methylation/drug effects , Cell Line, Tumor , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , DNA Methyltransferase 3A , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Decitabine/pharmacology , CpG Islands/genetics , Hydroxamic Acids/pharmacology , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/drug effects
19.
Opt Lett ; 49(3): 415-417, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300033

ABSTRACT

We present a corrigendum to our Letter [Opt. Lett.48, 5699 (2023)10.1364/OL.505761]. In section 3 of the original supplementary material, the absolute value is incorrectly taken in resolving the Kubo formula for describing the conductivity of graphene. Because this is a mistake with the conductivity of graphene, the coupling of the original structure is broken when the correct result is inserted into the code of the transfer matrix. So, the structure of the arithmetic logic unit (ALU), characteristic frequency point, and phase control have been modified accordingly. However, the ultimate function and the conclusion of this work remain unchanged.

20.
Neurochem Res ; 49(7): 1655-1664, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38217758

ABSTRACT

Studies have demonstrated that LIN28 is expressed in the CNS and may exert protective effects on neurons. However, it remains unknown whether LIN28 regulates ferroptosis in the context of epilepsy. In this study, we established an epilepsy model by culturing hippocampal neurons from rats in a magnesium-free (Mg2+-free) medium. In Mg2+-depleted conditions, hippocampal neurons exhibited reduced LIN28 expression, heightened miR-142-5p expression, decreased glutathione peroxidase (GPX) activity and expression, elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), resulting in a significant decline in cell viability and an increase in ferroptosis. Conversely, overexpression of LIN28 reversed these trends in the mentioned indices. Altogether, this study reveals that LIN28 may exert neuroprotective effects by inhibiting the miR-142-5p expression and suppressing ferroptosis in hippocampal neurons induced by Mg2+-free via increasing GPX4 expression.


Subject(s)
Epilepsy , Ferroptosis , Hippocampus , Magnesium , Neurons , Rats, Sprague-Dawley , Animals , Ferroptosis/physiology , Ferroptosis/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Neurons/metabolism , Neurons/drug effects , Magnesium/metabolism , Rats , Epilepsy/metabolism , Epilepsy/pathology , Cells, Cultured , RNA-Binding Proteins/metabolism , Cell Survival/drug effects , Cell Survival/physiology , MicroRNAs/metabolism , MicroRNAs/genetics , Reactive Oxygen Species/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL