Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.320
Filter
1.
Cell ; 185(1): 131-144.e18, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34919814

ABSTRACT

Two HIV fusion-inhibitory lipopeptides (LP-97 and LP-98) were designed with highly potent, long-acting antiviral activity. Monotherapy using a low dose of LP-98 sharply reduced viral loads and maintained long-term viral suppression in 21 SHIVSF162P3-infected rhesus macaques. We found that five treated monkeys achieved potential posttreatment control (PTC) efficacy and had lower viral DNA in deep lymph nodes, whereas monkeys with a stable viral rebound had higher viral DNA in superficial lymph nodes. The tissues of PTC monkeys exhibited significantly decreased quantitative viral outgrowth and fewer PD-1+ central memory CD4+ T cells, and CD8+ T cells contributed to virologic control efficacy. Moreover, LP-98 administrated as a pre-exposure prophylaxis (PrEP) provided complete protection against SHIVSF162P3 and SIVmac239 infections in 51 monkeys via intrarectal, intravaginal, or intravenous challenge. In conclusion, our lipopeptides exhibit high potential as an efficient HIV treatment or prevention strategy.


Subject(s)
HIV Fusion Inhibitors/administration & dosage , Lipopeptides/administration & dosage , Pre-Exposure Prophylaxis/methods , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Sustained Virologic Response , U937 Cells , Viral Load/drug effects
2.
Nat Immunol ; 23(2): 237-250, 2022 02.
Article in English | MEDLINE | ID: mdl-35075279

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are highly heterogeneous tissue-resident lymphocytes that regulate inflammation and tissue homeostasis in health and disease. However, how these cells integrate into the tissue microenvironment to perform tissue-specific functions is unclear. Here, we show neuropilin-1 (Nrp1), which is induced postnatally and sustained by lung-derived transforming growth factor beta-1 (TGFß1), is a tissue-specific marker of lung ILC2s. Genetic ablation or pharmacological inhibition of Nrp1 suppresses IL-5 and IL-13 production by ILC2s and protects mice from the development of pulmonary fibrosis. Mechanistically, TGFß1-Nrp1 signaling enhances ILC2 function and type 2 immunity by upregulating IL-33 receptor ST2 expression. These findings identify Nrp1 as a tissue-specific regulator of lung-resident ILC2s and highlight Nrp1 as a potential therapeutic target for pulmonary fibrosis.


Subject(s)
Immunity, Innate/immunology , Lung/immunology , Neuropilin-1/immunology , Animals , Disease Models, Animal , Inflammation/immunology , Interleukin-33/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred ICR , Pulmonary Fibrosis/immunology , Signal Transduction/immunology
3.
Nat Immunol ; 23(3): 423-430, 2022 03.
Article in English | MEDLINE | ID: mdl-35228696

ABSTRACT

The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires effective therapies against coronavirus disease 2019 (COVID-19), and neutralizing antibodies are a promising therapy. A noncompeting pair of human neutralizing antibodies (B38 and H4) blocking SARS-CoV-2 binding to its receptor, ACE2, have been described previously. Here, we develop bsAb15, a bispecific monoclonal antibody (bsAb) based on B38 and H4. bsAb15 has greater neutralizing efficiency than these parental antibodies, results in less selective pressure and retains neutralizing ability to most SARS-CoV-2 variants of concern (with more potent neutralizing activity against the Delta variant). We also selected for escape mutants of the two parental mAbs, a mAb cocktail and bsAb15, demonstrating that bsAb15 can efficiently neutralize all single-mAb escape mutants. Furthermore, prophylactic and therapeutic application of bsAb15 reduced the viral titer in infected nonhuman primates and human ACE2 transgenic mice. Therefore, this bsAb is a feasible and effective strategy to treat and prevent severe COVID-19.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , COVID-19/immunology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Cloning, Molecular , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes , Humans , Macaca mulatta , Mice , Neutralization Tests , Protein Engineering/methods , Structure-Activity Relationship
4.
Nature ; 619(7970): 506-513, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380779

ABSTRACT

The chemical activation of water would allow this earth-abundant resource to be transferred into value-added compounds, and is a topic of keen interest in energy research1,2. Here, we demonstrate water activation with a photocatalytic phosphine-mediated radical process under mild conditions. This reaction generates a metal-free PR3-H2O radical cation intermediate, in which both hydrogen atoms are used in the subsequent chemical transformation through sequential heterolytic (H+) and homolytic (H•) cleavage of the two O-H bonds. The PR3-OH radical intermediate provides an ideal platform that mimics the reactivity of a 'free' hydrogen atom, and which can be directly transferred to closed-shell π systems, such as activated alkenes, unactivated alkenes, naphthalenes and quinoline derivatives. The resulting H adduct C radicals are eventually reduced by a thiol co-catalyst, leading to overall transfer hydrogenation of the π system, with the two H atoms of water ending up in the product. The thermodynamic driving force is the strong P=O bond formed in the phosphine oxide by-product. Experimental mechanistic studies and density functional theory calculations support the hydrogen atom transfer of the PR3-OH intermediate as a key step in the radical hydrogenation process.

5.
Nature ; 610(7933): 783-790, 2022 10.
Article in English | MEDLINE | ID: mdl-36224385

ABSTRACT

Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to ß-globin, which results in fetal haemoglobin (HbF, α2γ2) being gradually replaced by adult haemoglobin (HbA, α2ß2)1. This process has motivated the development of innovative approaches to treat sickle cell disease and ß-thalassaemia by increasing HbF levels in postnatal RBCs2. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression. In RBC precursors, depletion of the von Hippel-Lindau (VHL) E3 ubiquitin ligase stabilized its ubiquitination target, hypoxia-inducible factor 1α (HIF1α)3,4, to induce γ-globin gene transcription. Mechanistically, HIF1α-HIF1ß heterodimers bound cognate DNA elements in BGLT3, a long noncoding RNA gene located 2.7 kb downstream of the tandem γ-globin genes HBG1 and HBG2. This was followed by the recruitment of transcriptional activators, chromatin opening and increased long-range interactions between the γ-globin genes and their upstream enhancer. Similar induction of HbF occurred with hypoxia or with inhibition of prolyl hydroxylase domain enzymes that target HIF1α for ubiquitination by the VHL E3 ubiquitin ligase. Our findings link globin gene regulation with canonical hypoxia adaptation, provide a mechanism for HbF induction during stress erythropoiesis and suggest a new therapeutic approach for ß-haemoglobinopathies.


Subject(s)
gamma-Globins , Humans , Chromatin , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , gamma-Globins/biosynthesis , gamma-Globins/genetics , Hypoxia/genetics , Prolyl Hydroxylases/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA, Long Noncoding , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Erythropoiesis
6.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588418

ABSTRACT

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Subject(s)
Caenorhabditis elegans Proteins , Telomere-Binding Proteins , Animals , Telomere-Binding Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Dimerization , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/chemistry , Telomeric Repeat Binding Protein 1/metabolism , Protein Binding , Telomere/genetics , Telomere/metabolism , Shelterin Complex , DNA/metabolism , Telomeric Repeat Binding Protein 2 , Mammals/genetics
7.
PLoS Biol ; 21(3): e3002008, 2023 03.
Article in English | MEDLINE | ID: mdl-36862758

ABSTRACT

Idiopathic scoliosis (IS) is the most common spinal deformity diagnosed in childhood or early adolescence, while the underlying pathogenesis of this serious condition remains largely unknown. Here, we report zebrafish ccdc57 mutants exhibiting scoliosis during late development, similar to that observed in human adolescent idiopathic scoliosis (AIS). Zebrafish ccdc57 mutants developed hydrocephalus due to cerebrospinal fluid (CSF) flow defects caused by uncoordinated cilia beating in ependymal cells. Mechanistically, Ccdc57 localizes to ciliary basal bodies and controls the planar polarity of ependymal cells through regulating the organization of microtubule networks and proper positioning of basal bodies. Interestingly, ependymal cell polarity defects were first observed in ccdc57 mutants at approximately 17 days postfertilization, the same time when scoliosis became apparent and prior to multiciliated ependymal cell maturation. We further showed that mutant spinal cord exhibited altered expression pattern of the Urotensin neuropeptides, in consistent with the curvature of the spine. Strikingly, human IS patients also displayed abnormal Urotensin signaling in paraspinal muscles. Altogether, our data suggest that ependymal polarity defects are one of the earliest sign of scoliosis in zebrafish and disclose the essential and conserved roles of Urotensin signaling during scoliosis progression.


Subject(s)
Hydrocephalus , Scoliosis , Urotensins , Animals , Cilia/metabolism , Ependyma/metabolism , Ependyma/pathology , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Scoliosis/genetics , Scoliosis/metabolism , Scoliosis/pathology , Urotensins/metabolism , Zebrafish
8.
Proc Natl Acad Sci U S A ; 120(8): e2207263120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36787362

ABSTRACT

Sperm acrosomal membrane proteins, such as Izumo sperm-egg fusion 1 (IZUMO1) and sperm acrosome-associated 6 (SPACA6), play essential roles in mammalian gamete binding or fusion. How their biosynthesis is regulated during spermiogenesis has largely remained elusive. Here, we show that 1700029I15Rik knockout male mice are severely subfertile and their spermatozoa do not fuse with eggs. 1700029I15Rik is a type-II transmembrane protein expressed in early round spermatids but not in mature spermatozoa. It interacts with proteins involved in N-linked glycosylation, disulfide isomerization, and endoplasmic reticulum (ER)-Golgi trafficking, suggesting a potential role in nascent protein processing. The ablation of 1700029I15Rik destabilizes non-catalytic subunits of the oligosaccharyltransferase (OST) complex that are pivotal for N-glycosylation. The knockout testes exhibit normal expression of sperm plasma membrane proteins, but decreased abundance of multiple acrosomal membrane proteins involved in fertilization. The knockout sperm show upregulated chaperones related to ER-associated degradation (ERAD) and elevated protein ubiquitination; strikingly, SPACA6 becomes undetectable. Our results support for a specific, 1700029I15Rik-mediated pathway underpinning the biosynthesis of acrosomal membrane proteins during spermiogenesis.


Subject(s)
Acrosome , Membrane Proteins , Animals , Male , Mice , Acrosome/metabolism , Mammals/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Knockout , Semen/metabolism , Seminal Plasma Proteins/metabolism , Sperm-Ovum Interactions , Spermatozoa/metabolism , Ovum/metabolism
9.
Genome Res ; 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35868641

ABSTRACT

Histone modifications are critical epigenetic indicators of chromatin state associated with gene expression. Although the reprogramming patterns of H3K4me3 and H3K27me3 have been elucidated in mouse and human preimplantation embryos, the relationship between these marks and zygotic genome activation (ZGA) remains poorly understood. By ultra-low-input native chromatin immunoprecipitation and sequencing, we profiled global H3K4me3 and H3K27me3 in porcine oocytes and in vitro fertilized (IVF) embryos. We found that promoters of ZGA genes occupied sharp H3K4me3 peaks in oocytes, and these peaks became broader after fertilization, and reshaped into sharp again during ZGA. By simultaneous depletion of H3K4me3 demethylase KDM5B and KDM5C, we determined that broad H3K4me3 domain maintenance impaired ZGA gene expression, suggesting its function to prevent premature ZGA entry. By contrast, broad H3K27me3 domains underwent global removal upon fertilization, followed by a re-establishment for H3K4me3/H3K27me3 bivalency in morulae. We also found that bivalent marks were deposited at promoters of ZGA genes, and inhibiting this deposition was correlated with the activation of ZGA genes. It suggests that promoter bivalency contributes to ZGA exit in porcine embryos. Moreover, we demonstrated that aberrant reprogramming of H3K4me3 and H3K27me3 triggered ZGA dysregulation in somatic cell nuclear transfer (SCNT) embryos, whereas H3K27me3-mediated imprinting did not exist in porcine IVF and SCNT embryos. Our findings highlight two previously unknown epigenetic reprogramming modes coordinated with ZGA in porcine preimplantation embryos. Finally, the similarities observed between porcine and human histone modification dynamics suggest that the porcine embryo may also be a useful model for human embryo research.

10.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37833842

ABSTRACT

Recent studies have shed light on the potential of circular RNA (circRNA) as a biomarker for disease diagnosis and as a nucleic acid vaccine. The exploration of these functionalities requires correct circRNA full-length sequences; however, existing assembly tools can only correctly assemble some circRNAs, and their performance can be further improved. Here, we introduce a novel feature known as the junction contig (JC), which is an extension of the back-splice junction (BSJ). Leveraging the strengths of both BSJ and JC, we present a novel method called JCcirc (https://github.com/cbbzhang/JCcirc). It enables efficient reconstruction of all types of circRNA full-length sequences and their alternative isoforms using splice graphs and fragment coverage. Our findings demonstrate the superiority of JCcirc over existing methods on human simulation datasets, and its average F1 score surpasses CircAST by 0.40 and outperforms both CIRI-full and circRNAfull by 0.13. For circRNAs below 400 bp, 400-800 bp, 800 bp-1200 bp and above 1200 bp, the correct assembly rates are 0.13, 0.09, 0.04 and 0.03 higher, respectively, than those achieved by existing methods. Moreover, JCcirc also outperforms existing assembly tools on other five model species datasets and real sequencing datasets. These results show that JCcirc is a robust tool for accurately assembling circRNA full-length sequences, laying the foundation for the functional analysis of circRNAs.


Subject(s)
RNA, Circular , RNA , Humans , RNA, Circular/genetics , Sequence Analysis, RNA/methods , Protein Isoforms/genetics , RNA/genetics
11.
Plant Physiol ; 195(1): 356-369, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38227494

ABSTRACT

Actin dynamics are critical for plant cell morphogenesis, but the underlying signaling mechanisms regulating these dynamics are not well understood. Here, we established that PLEIOTROPIC REGULATORY LOCUS1 (PRL1) modulates leaf pavement cell (PC) morphogenesis in Arabidopsis (Arabidopsis thaliana) by maintaining the dynamic homeostasis of actin microfilaments (MF). Our previous studies indicated that PC shape was determined by antagonistic RHO-RELATED GTPase FROM PLANTS 2 (ROP2) and RHO-RELATED GTPase FROM PLANTS 6 (ROP6) signaling pathways that promote cortical MF and microtubule organization, respectively. Our genetic screen for additional components in ROP6-mediated signaling identified prl1 alleles. Genetic analysis confirmed that PRL1 plays a key role in PC morphogenesis. Mutations in PRL1 caused cortical MF depolymerization, resulting in defective PC morphogenesis. Further genetic analysis revealed that PRL1 is epistatic to ROP2 and ROP6 in PC morphogenesis. Mutations in PRL1 enhanced the effects of ROP2 and ROP6 in PC morphogenesis, leading to a synergistic phenotype in the PCs of ROP2 prl1 and ROP6 prl1. Furthermore, the activities of ROP2 and ROP6 were differentially altered in prl1 mutants, suggesting that ROP2 and ROP6 function downstream of PRL1. Additionally, cortical MF depolymerization in prl1 mutants occurred independently of ROP2 and ROP6, implying that these proteins impact PC morphogenesis in the prl1 mutant through other cellular processes. Our research indicates that PRL1 preserves the structural integrity of actin and facilitates pavement cell morphogenesis in Arabidopsis.


Subject(s)
Actin Cytoskeleton , Arabidopsis Proteins , Arabidopsis , GTP-Binding Proteins , Monomeric GTP-Binding Proteins , Morphogenesis , Mutation , Actin Cytoskeleton/metabolism , Actins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Morphogenesis/genetics , Mutation/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Signal Transduction
12.
Blood ; 142(10): 918-932, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37339583

ABSTRACT

Most cells can eliminate unstable or misfolded proteins through quality control mechanisms. In the inherited red blood cell disorder ß-thalassemia, mutations in the ß-globin gene (HBB) lead to a reduction in the corresponding protein and the accumulation of cytotoxic free α-globin, which causes maturation arrest and apoptosis of erythroid precursors and reductions in the lifespan of circulating red blood cells. We showed previously that excess α-globin is eliminated by Unc-51-like autophagy activating kinase 1 (ULK1)-dependent autophagy and that stimulating this pathway by systemic mammalian target of rapamycin complex 1 (mTORC1) inhibition alleviates ß-thalassemia pathologies. We show here that disrupting the bicistronic microRNA gene miR-144/451 alleviates ß-thalassemia by reducing mTORC1 activity and stimulating ULK1-mediated autophagy of free α-globin through 2 mechanisms. Loss of miR-451 upregulated its target messenger RNA, Cab39, which encodes a cofactor for LKB1, a serine-threonine kinase that phosphorylates and activates the central metabolic sensor adenosine monophosphate-activated protein kinase (AMPK). The resultant enhancement of LKB1 activity stimulated AMPK and its downstream effects, including repression of mTORC1 and direct activation of ULK1. In addition, loss of miR-144/451 inhibited the expression of erythroblast transferrin receptor 1, causing intracellular iron restriction, which has been shown to inhibit mTORC1, reduce free α-globin precipitates, and improve hematological indices in ß-thalassemia. The beneficial effects of miR-144/451 loss in ß-thalassemia were inhibited by the disruption of Cab39 or Ulk1 genes. Together, our findings link the severity of ß-thalassemia to a highly expressed erythroid microRNA locus and a fundamental, metabolically regulated protein quality control pathway that is amenable to therapeutic manipulation.


Subject(s)
MicroRNAs , beta-Thalassemia , Humans , beta-Thalassemia/therapy , AMP-Activated Protein Kinases/metabolism , alpha-Globins , Autophagy/genetics , MicroRNAs/genetics , Mechanistic Target of Rapamycin Complex 1 , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Intracellular Signaling Peptides and Proteins/genetics
13.
Chem Rev ; 123(11): 7193-7294, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37159561

ABSTRACT

Hydrothermal process is an emerging technology that contributes to sustainable production of biomass-derived chemicals, fuels, and materials. This technology uses hot compressed water to convert various biomass feedstocks including recalcitrant organic compounds in biowastes into desired solid, liquid, and gaseous products. In recent years, considerable progress has been made in the hydrothermal conversion of lignocellulosic as well as nonlignocellulosic biomass to value-added products and bioenergy to fulfill the principles of circular economy. However, it is important to assess hydrothermal processes in terms of their capabilities and limitations from different sustainability aspects so that further advances can be made toward improvement of their technical maturity and commercialization potential. The key aims of this comprehensive review are to (a) explain the inherent properties of biomass feedstocks and physio-chemical characteristics of their bioproducts, (b) elucidate related transformation pathways, (c) clarify the role of hydrothermal process for biomass conversion, (d) evaluate the capability of hydrothermal treatment coupled with other technologies for producing novel chemicals, fuels and materials, (e) explore different sustainability assessments of hydrothermal processes for potential large-scale applications, and (f) offer our perspectives to facilitate the transition from a primarily petro-based to an alternative biobased society in the context of changing climate.

14.
Rev Med Virol ; 34(2): e2522, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348583

ABSTRACT

Recently, patients with Mpox breakthrough infection or reinfection were constantly reported. However, the induction, risk factors, and important clinical symptoms of breakthrough infection and reinfection of Mpox virus (MPXV), as well as the factors affecting the effectiveness of Mpox vaccine are not characterized. Herein, a literature review was preformed to summarize the risk factors and important clinical symptoms of patients with Mpox breakthrough infection or reinfection, as well as the factors affecting the effectiveness of smallpox vaccine against Mpox. Results showed that MSM sexual behavior, condomless sexual behavior, multiple sexual partners, close contact, HIV infection, and the presence of comorbidity are important risk factors for Mpox breakthrough infection and reinfection. Genital ulcers, proctitis, and lymphadenopathy are the important clinical symptoms of Mpox breakthrough infection and reinfection. The effectiveness of emergent vaccination of smallpox vaccine for post-exposure of MPXV is associated with smallpox vaccination history, interval between exposure and vaccination, and history of HIV infection. This review provides a better understanding for the risk factors and important clinical symptoms of Mpox breakthrough infection and reinfection, as well as the formulation of Mpox vaccine vaccination strategies.


Subject(s)
HIV Infections , Mpox (monkeypox) , Smallpox Vaccine , Humans , Reinfection/epidemiology , Reinfection/prevention & control , Breakthrough Infections , HIV Infections/complications , HIV Infections/epidemiology , Antigens, Viral
15.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34987100

ABSTRACT

Myeloid lineage cells such as macrophages and dendritic cells (DCs), targeted by HIV-1, are important vehicles for virus dissemination through the body as well as viral reservoirs. Compared to activated lymphocytes, myeloid cells are collectively more resistant to HIV-1 infection. Here we report that NRP-1, encoding transmembrane protein neuropilin-1, is highly expressed in macrophages and DCs but not CD4+ T cells, serving as an anti-HIV factor to inhibit the infectivity of HIV-1 progeny virions. Silencing NRP-1 enhanced the transmission of HIV-1 in macrophages and DCs significantly and increased the infectivity of the virions produced by these cells. We further demonstrated that NRP-1 was packaged into the progeny virions to inhibit their ability to attach to target cells, thus reducing the infectivity of the virions. These data indicate that NRP-1 is a newly identified antiviral protein highly produced in both macrophages and DCs that inhibit HIV-1 infectivity; thus, NRP-1 may be a novel therapeutic strategy for the treatment of HIV-1 infection.


Subject(s)
HIV Infections/drug therapy , Myeloid Cells/metabolism , Neuropilin-1/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Dendritic Cells/metabolism , HIV-1 , Humans , Macrophages/metabolism , Macrophages/virology , Virion/metabolism , Virus Replication/drug effects
16.
Proc Natl Acad Sci U S A ; 119(44): e2117523119, 2022 11.
Article in English | MEDLINE | ID: mdl-36288286

ABSTRACT

Vγ9Vδ2 T cells play an important role in the development and progression of psoriasis vulgaris (PV), but how they promote skin inflammation and the molecular mechanisms underlying Vγ9Vδ2 T cell dysfunction are poorly understood. Here, we show that circulating Vγ9Vδ2 T cells are decreased and exhibit enhanced proliferation and increased production of IFN-γ and TNF-α in PV patients. Monocytes from PV patients express higher levels of the phosphoantigen sensor butyrophilin 3A1 (BTN3A1) than monocytes from healthy controls. Blockade of BTN3A1 suppresses Vγ9Vδ2 T cell activation and abolishes the difference in Vγ9Vδ2 T cell activation between PV patients and healthy controls. The CD14+ cells in PV skin lesions highly express BTN3A1 and juxtapose to Vδ2 T cells. In addition, IFN-γ induces the up-regulation of BTN3A1 on monocytes. Collectively, our results demonstrate a crucial role of BTN3A1 on monocytes in regulating Vγ9Vδ2 T cell activation and highlight BTN3A1 as a potential therapeutic target for psoriasis.


Subject(s)
Psoriasis , Receptors, Antigen, T-Cell, gamma-delta , Humans , Butyrophilins/metabolism , Up-Regulation , Tumor Necrosis Factor-alpha , Antigens , Antigens, CD , Lymphocyte Activation , T-Lymphocytes
17.
Chem Soc Rev ; 53(11): 5552-5592, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38644694

ABSTRACT

Lithium-ion batteries (LIBs) are widely used as power storage systems in electronic devices and electric vehicles (EVs). Recycling of spent LIBs is of utmost importance from various perspectives including recovery of valuable metals (mostly Co and Li) and mitigation of environmental pollution. Recycling methods such as direct recycling, pyrometallurgy, hydrometallurgy, bio-hydrometallurgy (bioleaching) and electrometallurgy are generally used to resynthesise LIBs. These methods have their own benefits and drawbacks. This manuscript provides a critical review of recent advances in the recycling of spent LIBs, including the development of recycling processes, identification of the products obtained from recycling, and the effects of recycling methods on environmental burdens. Insights into chemical reactions, thermodynamics, kinetics, and the influence of operating parameters of each recycling technology are provided. The sustainability of recycling technologies (e.g., life cycle assessment and life cycle cost analysis) is critically evaluated. Finally, the existing challenges and future prospects are presented for further development of sustainable, highly efficient, and environmentally benign recycling of spent LIBs to contribute to the circular economy.

18.
Chem Soc Rev ; 53(7): 3457-3484, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38411467

ABSTRACT

Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.

19.
Lancet Oncol ; 25(6): e236-e249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821098

ABSTRACT

This paper is the first of a Series on theranostics that summarises the current landscape of the radiopharmaceutical sciences as they pertain to oncology. In this Series paper, we describe exciting developments in radiochemistry and the production of radionuclides, the development and translation of theranostics, and the application of artificial intelligence to our field. These developments are catalysing growth in the use of radiopharmaceuticals to the benefit of patients worldwide. We also highlight some of the key issues to be addressed in the coming years to realise the full potential of radiopharmaceuticals to treat cancer.


Subject(s)
Neoplasms , Radiopharmaceuticals , Humans , Radiopharmaceuticals/therapeutic use , Neoplasms/therapy , Neoplasms/radiotherapy , Medical Oncology , Artificial Intelligence
20.
Lancet Oncol ; 25(6): e250-e259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821099

ABSTRACT

Although the promise of radionuclides for the diagnosis and treatment of disease was recognised soon after the discovery of radioactivity in the late 19th century, the systematic use of radionuclides in medicine only gradually increased over the subsequent hundred years. The past two decades, however, has seen a remarkable surge in the clinical application of diagnostic and therapeutic radiopharmaceuticals, particularly in oncology. This development is an exciting time for the use of theranostics in oncology, but the rapid growth of this area of nuclear medicine has created challenges as well. In particular, the infrastructure for the manufacturing and distribution of radiopharmaceuticals remains in development, and regulatory bodies are still optimising guidelines for this new class of drug. One issue of paramount importance for achieving equitable access to theranostics is building a sufficiently trained workforce in high-income, middle-income, and low-income countries. Here, we discuss the key challenges and opportunities that face the field as it seeks to build its workforce for the 21st century.


Subject(s)
Medical Oncology , Nuclear Medicine , Radiopharmaceuticals , Humans , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/supply & distribution , Nuclear Medicine/education , Nuclear Medicine/trends , Neoplasms/radiotherapy , Neoplasms/therapy , Health Workforce/trends
SELECTION OF CITATIONS
SEARCH DETAIL