Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Nano Lett ; 24(17): 5197-5205, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634879

ABSTRACT

Highly active nonprecious-metal single-atom catalysts (SACs) toward catalytic transfer hydrogenation (CTH) of α,ß-unsaturated aldehydes are of great significance but still are deficient. Herein, we report that Zn-N-C SACs containing Zn-N3 moieties can catalyze the conversion of cinnamaldehyde to cinnamyl alcohol with a conversion of 95.5% and selectivity of 95.4% under a mild temperature and atmospheric pressure, which is the first case of Zn-species-based heterogeneous catalysts for the CTH reaction. Isotopic labeling, in situ FT-IR spectroscopy, and DFT calculations indicate that reactants, coabsorbed at the Zn sites, proceed CTH via a "Meerwein-Ponndorf-Verley" mechanism. DFT calculations also reveal that the high activity over Zn-N3 moieties stems from the suitable adsorption energy and favorable reaction energy of the rate-determining step at the Zn active sites. Our findings demonstrate that Zn-N-C SACs hold extraordinary activity toward CTH reactions and thus provide a promising approach to explore the advanced SACs for high-value-added chemicals.

2.
Small ; 20(16): e2306694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38044277

ABSTRACT

Constructing structural defects is a promising way to enhance the catalytic activity toward the hydrogen evolution reaction (HER). However, the relationship between defect density and HER activity has rarely been discussed. In this study, a series of Pt/WOx nanocrystals are fabricated with controlled morphologies and structural defect densities using a facile one-step wet chemical method. Remarkably, compared with polygonal and star structures, the dendritic Pt/WOx (d-Pt/WOx) exhibited a richer structural defect density, including stepped surfaces and atomic defects. Notably, the d-Pt/WOx catalyst required 4 and 16 mV to reach 10 mA cm-2, and its turnover frequency (TOF) values are 11.6 and 22.8 times higher than that of Pt/C under acidic and alkaline conditions, respectively. In addition, d-Pt/WOx//IrO2 displayed a mass activity of 5158 mA mgPt -1 at 2.0 V in proton exchange membrane water electrolyzers (PEMWEs), which is significantly higher than that of the commercial Pt/C//IrO2 system. Further mechanistic studies suggested that the d-Pt/WOx exhibited reduced number of antibonding bands and the lowest dz2-band center, contributing to hydrogen adsorption and release in acidic solution. The highest dz2-band center of d-Pt/WOx facilitated the adsorption of hydrogen from water molecules and water dissociation in alkaline medium. This work emphasizes the key role of the defect density in improving the HER activity of electrocatalysts.

3.
Nano Lett ; 23(11): 5123-5130, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37272668

ABSTRACT

Developing cost-effective and highly efficient photocathodes toward polysulfide redox reduction is highly desirable for advanced quantum dot (QD) photovoltaics. Herein, we demonstrate nitrogen doped carbon (N-C) shell-supported iron single atom catalysts (Fe-SACs) capable of catalyzing polysulfide reduction in QD photovoltaics for the first time. Specifically, Fe-SACs with FeN4 active sites feature a power conversion efficiency of 13.7% for ZnCuInSe-QD photovoltaics (AM1.5G, 100 mW/cm2), which is the highest value for ZnCuInSe QD-based photovoltaics, outperforming those of Cu-SACs and N-C catalysts. Compared with N-C, Fe-SACs exhibit suitable energy level matching with polysulfide redox couples, revealed by the Kelvin probe force microscope, which accelerates the charge transferring at the interfaces of catalyst/polysulfide redox couple. Density functional theory calculations demonstrate that the outstanding catalytic activity of Fe-SACs originates from the preferable adsorption of S42- on the FeN4 active sites and the high activation degree of the S-S bonds in S42- initiated by the FeN4 active sites.

4.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612919

ABSTRACT

Salvia miltiorrhiza is a prized traditional Chinese medicinal plant species. Its red storage roots are primarily used for the treatment of cardiovascular and cerebrovascular diseases. In this study, a transcription factor gene AtMYB2 was cloned and introduced into Salvia miltiorrhiza for ectopic expression. Overexpression of AtMYB2 enhanced salt stress resistance in S. miltiorrhiza, leading to a more resilient phenotype in transgenic plants exposed to high-salinity conditions. Physiological experiments have revealed that overexpression of AtMYB2 can decrease the accumulation of reactive oxygen species (ROS) during salt stress, boost the activity of antioxidant enzymes, and mitigate oxidative damage to cell membranes. In addition, overexpression of AtMYB2 promotes the synthesis of tanshinones and phenolic acids by upregulating the expression of biosynthetic pathway genes, resulting in increased levels of these secondary metabolites. In summary, our findings demonstrate that AtMYB2 not only enhances plant tolerance to salt stress, but also increases the accumulation of secondary metabolites in S. miltiorrhiza. Our study lays a solid foundation for uncovering the molecular mechanisms governed by AtMYB2 and holds significant implications for the molecular breeding of high-quality S. miltiorrhiza varieties.


Subject(s)
Hydroxybenzoates , Salvia miltiorrhiza , Salvia miltiorrhiza/genetics , Abietanes , Antioxidants
5.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474225

ABSTRACT

MiR399 plays an important role in plant growth and development. The objective of the present study was to elucidate the evolutionary characteristics of the MIR399 gene family in grapevine and investigate its role in stress response. To comprehensively investigate the functions of miR399 in grapevine, nine members of the Vvi-MIR399 family were identified based on the genome, using a miRBase database search, located on four chromosomes (Chr 2, Chr 10, Chr 15, and Chr 16). The lengths of the Vvi-miR399 precursor sequences ranged from 82 to 122 nt and they formed stable stem-loop structures, indicating that they could produce microRNAs (miRNAs). Furthermore, our results suggested that the 2 to 20 nt region of miR399 mature sequences were relatively conserved among family members. Phylogenetic analysis revealed that the Vvi-MIR399 members of dicots (Arabidopsis, tomato, and sweet orange) and monocots (rice and grapevine) could be divided into three clades, and most of the Vvi-MIR399s were closely related to sweet orange in dicots. Promoter analysis of Vvi-MIR399s showed that the majority of the predicted cis-elements were related to stress response. A total of 66.7% (6/9) of the Vvi-MIR399 promoters harbored drought, GA, and SA response elements, and 44.4% (4/9) of the Vvi-MIRR399 promoters also presented elements involved in ABA and MeJA response. The expression trend of Vvi-MIR399s was consistent in different tissues, with the lowest expression level in mature and young fruits and the highest expression level in stems and young leaves. However, nine Vvi-MIR399s and four target genes showed different expression patterns when exposed to low light, high light, heat, cold, drought, and salt stress. Interestingly, a putative target of Vvi-MIR399 targeted multiple genes; for example, seven Vvi-MIR399s simultaneously targeted VIT_213s0067g03280.1. Furthermore, overexpression of Vvi_MIR399e and Vvi_MIR399f in Arabidopsis enhanced tolerance to drought compared with wild-type (WT). In contrast, the survival rate of Vvi_MIR399d-overexpressed plants were zero after drought stress. In conclusion, Vvi-MIR399e and Vvi-MIR399f, which are related to drought tolerance in grapevine, provide candidate genes for future drought resistance breeding.


Subject(s)
Vitis , Arabidopsis/genetics , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Breeding , Plant Proteins/genetics , Promoter Regions, Genetic , Stress, Physiological/genetics
6.
Small ; 19(33): e2301613, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36967546

ABSTRACT

Fabricating heterogeneous interfaces is an effective approach to improve the intrinsic activity of noble-metal-free catalysts for water splitting. Herein, 3D copper-nickel selenide (CuNi@NiSe) nanodendrites with abundant heterointerfaces are constructed by a precise multi-step wet chemistry method. Notably, CuNi@NiSe only needs 293 and 41 mV at 10 mA cm-2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. Moreover, the assembled CuNi@NiSe system just requires 2.2 V at 1000 mA cm-2 in anion exchange membrane (AEM) electrolyzer, which is 2.0 times better than Pt/C//IrO2 . Mechanism studies reveal Cu defects on the Cu2-x Se surface boost the electron transfer between Cu atoms and Se atoms of Ni3 Se4 via Cu2-x Se/Ni3 Se4 interface, largely lowering the reaction barrier of rate-determining step for HER. Besides, the intrinsic activity of Ni atoms for in situ generated NiOOH is largely enhanced during OER because of the electron-modulating effect of Se atoms at Ni3 Se4 /NiOOH interface. The unique 3D structure also promotes the mass transfer during catalysis process. This work emphasizes the essential role of interfacial engineering for practical water splitting.

7.
Small ; 19(26): e2301001, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36949523

ABSTRACT

Molecule sieve effect (MSE) can enable direct separation of target, thus overcoming two major scientific and industrial separation problems in traditional separation, coadsorption, and desorption. Inspired by this, herein, the concept of coordination sieve effect (CSE) for direct separation of UO2 2+ , different from the previously established two-step separation method, adsorption plus desorption is reported. The used adsorbent, polyhedron-based hydrogen-bond framework (P-HOF-1), made from a metal-organic framework (MOF) precursor through a two-step postmodification approach, afforded high uptake capacity (close to theoretical value) towards monovalent Cs+ , divalent Sr2+ , trivalent Eu3+ , and tetravalent Th4+ ions, but completely excluded UO2 2+ ion, suggesting excellent CSE. Direct separation of UO2 2+ can be achieved from a mixed solution containing Cs+ , Sr2+ , Eu3+ , Th4+ , and UO2 2+ ions, giving >99.9% removal efficiency for Cs+ , Sr2+ , Eu3+ , and Th4+ ions, but <1.2% removal efficiency for UO2 2+ , affording benchmark reverse selectivity (SM/U ) of >83 and direct generation of high purity UO2 2+ (>99.9%). The mechanism for such direct separation via CSE, as unveiled by both single crystal X-ray diffraction and density-functional theory (DFT) calculation, is due to the spherical coordination trap in P-HOF-1 that can exactly accommodate the spherical coordination ions of Cs+ , Sr2+ , Eu3+ , and Th4+ , but excludes the planar coordination UO2 2+ ion.

8.
Small ; 19(22): e2300107, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36840667

ABSTRACT

Carbon materials are widely accepted as promising candidates for sodium-ion batteries (SIBs) anodes due to their chemical stability and conductivity, while the capacity is still unsatisfactory. Here, this work reports the superhigh capacity Na storage through initiating fluorine chemistry (CF bonds) in carbon synthesized by the dehydrogenation and fluorination of polycyclic aromatic hydrocarbon such as pitch. Experimental and theoretical investigations uncover that CF bonds exist at the form of dangling bonds (CFx ), which generates the coexistence of graphitic and defective nanodomains. It delivers a superhigh capacity of 450 mAh g-1 , far surpassing most of current SIBs carbon anodes. Theoretical calculation attributes this performance to a new Na storage mechanism that Na can be accommodated in the form of cluster rather than a single ion at each host site with F-doping. This work highlights the significance of carbon material chemistry in establishing the novel ion storage manner in SIBs and other batteries.

9.
Purinergic Signal ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153612

ABSTRACT

More and more studies have revealed that P2 purinergic receptors play a key role in the progression of colorectal cancer (CRC). P2X and P2Y purinergic receptors can be used as promoters and regulators of CRC and play a dual role in the progression of CRC. CRC microenvironment is rich in ATP and its cleavage products (ADP, AMP, Ado), which act as activators of P2X and P2Y purinergic receptors. The activation of P2X and P2Y purinergic receptors regulates the progression of CRC mainly by regulating the function of immune cells and mediating different signal pathways. In this paper, we focus on the specific mechanisms and functional roles of P2X7, P2Y12, and P2Y2 receptors in the growth and progression of CRC. The antagonistic effects of these selective antagonists of P2X purinergic receptors on the growth, invasion, and metastasis of CRC were further discussed. Moreover, different studies have reported that P2X7 receptor can be used as an effective predictor of patients with CRC. All these indicate that P2 purinergic receptors are a key regulator of CRC. Therefore, antagonizing P2 purinergic receptors may be an innovative treatment for CRC.

10.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958490

ABSTRACT

Transcription factors play crucial roles in regulating plant abiotic stress responses and physiological metabolic processes, which can be used for plant molecular breeding. In this study, an R2R3-MYB transcription factor gene, AtMYB12, was isolated from Arabidopsis thaliana and introduced into Salvia miltiorrhiza under the regulation of the CaMV35S promoter. The ectopic expression of AtMYB12 resulted in improved salt tolerance in S. miltiorrhiza; transgenic plants showed a more resistant phenotype under high-salinity conditions. Physiological experiments showed that transgenic plants exhibited higher chlorophyll contents, and decreased electrolyte leakage and O2- and H2O2 accumulation when subjected to salt stress. Moreover, the activity of reactive oxygen species (ROS)-scavenging enzymes was enhanced in S. miltiorrhiza via the overexpression of AtMYB12, and transgenic plants showed higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities compared with those of the wild type (WT) under salt stress, coupled with lower malondialdehyde (MDA) levels. In addition, the amount of salvianolic acid B was significantly elevated in all AtMYB12 transgenic hair roots and transgenic plants, and qRT-PCR analysis revealed that most genes in the phenolic acid biosynthetic pathway were up-regulated. In conclusion, these results demonstrated that AtMYB12 can significantly improve the resistance of plants to salt stress and promote the biosynthesis of phenolic acids by regulating genes involved in the biosynthetic pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Salvia miltiorrhiza , Arabidopsis/metabolism , Salvia miltiorrhiza/metabolism , Salt Tolerance/genetics , Hydrogen Peroxide/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Antioxidants , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
11.
Angew Chem Int Ed Engl ; 62(9): e202214259, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36495017

ABSTRACT

The construction of highly active, durable, and cost-effective catalysts is urgently needed for green hydrogen production. Herein, catalysts consisting of high-density Pt (24 atoms nm-2 ) and Ir (32 atoms nm-2 ) single atoms anchored on Co(OH)2 were constructed by a facile one-step approach. Remarkably, Pt1 /Co(OH)2 and Ir1 /Co(OH)2 only required 4 and 178 mV at 10 mA cm-2 for hydrogen evolution reaction and oxygen evolution reaction, respectively. Moreover, the assembled Pt1 /Co(OH)2 //Ir1 /Co(OH)2 system showed mass activity of 4.9 A mgnoble metal -1 at 2.0 V in an alkaline water electrolyzer, which is 316.1 times higher than that of Pt/C//IrO2 . Mechanistic studies revealed that reconstructed Ir-O6 single atoms and remodeled Pt triple-atom sites enhanced the occupancy of Ir-O bonding orbitals and improved the occupation of Pt-H antibonding orbital, respectively, contributing to the formation of the O-O bond and the desorption of hydrogen. This one-step approach was also generalized to fabricate other 20 single-atom catalysts.

12.
Inorg Chem ; 61(6): 2954-2961, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35104118

ABSTRACT

Iron phosphide nanoparticles (NPs) are promising noble metal-free electrocatalysts for the hydrogen evolution reaction (HER), but they usually show inferior activity due to the limited surface area and oxidative passivation. We reported a facile synthetic method to prepare FeP hollow NPs (HNPs) with various precursors. It was proven that the structural parameters (i.e., size, phosphating temperature, phase, and surfactant) of oxide precursors were correlated to the electrochemically active surface area (ECSA), phase purity, surface oxidation, and hollow morphology of FeP HER catalysts, thus affecting the HER activity. Among the three FeP HNPs, the 9 nm FeP HNPs prepared using the Fe3O4 precursor exhibited the highest overall activity with the lowest overpotential of 76 mV to drive a cathodic current density of 10 mA·cm-2 due to the highest ECSA, while 25 nm FeP prepared using the Fe2O3 precursor showed the highest turnover frequency because of the high phase purity and low surface oxidation degree.

13.
BMC Infect Dis ; 22(1): 34, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991517

ABSTRACT

BACKGROUND: Sepsis is a leading cause of pediatric morbidity and mortality worldwide. The aim of this study was to explore the association of decreased mitochondrial respiratory chain enzyme activities with the risk for pediatric sepsis, and explore their association with mortality among affected children. METHODS: A total of 50 incident cases with sepsis and 49 healthy controls participated in this study. The level of serum coenzyme Q10 was measured by high-performance liquid chromatography, and selected mitochondrial respiratory chain enzymes in WBC were measured using spectrophotometric. Logistic regression models were used to estimate odds ratio (OR) and 95% confidence interval (CI). RESULTS: The levels of CoQ10, complex II, complex I + III and FoF1-ATPase were significantly higher in healthy controls than in children with sepsis (p < 0.001, = 0.004, < 0.001 and < 0.001, respectively). In children with sepsis, levels of CoQ10 and complex I + III were significantly higher in survived cases than in deceased cases (p < 0.001). Per 0.05 µmol/L, 50 nmol/min.mg and 100 nmol/min.mg increment in CoQ10, complex I + III and FoF1-ATPase were associated with significantly lowered risk of having sepsis, even after adjusting for confounding factors (OR = 0.85, 0.68 and 0.04, p = 0.001, < 0.001 and < 0.001, respectively). Per 0.05 µmol/L and 50 nmol/min.mg increment in CoQ10 and complex I + III was associated with significantly lowered risk of dying from sepsis during hospitalization, and significance retained after adjustment (OR = 0.73 and 0.76, 95% CI: 0.59 to 0.90 and 0.64 to 0.89, p = 0.004 and 0.001, respectively) in children with sepsis. CONCLUSIONS: Our findings indicate the promising predictive contribution of low serum CoQ10 and complex I + III to the risk of pediatric sepsis and its associated mortality during hospitalization among Chinese children. Trial registration The trial was registered with www.chictr.org.cn , number ChiCTR-IOR-15006446 on May 05, 2015. Retrospectively registered.


Subject(s)
Sepsis , Child , China/epidemiology , Electron Transport , Humans , Sepsis/epidemiology
14.
Angew Chem Int Ed Engl ; 61(23): e202202633, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35319804

ABSTRACT

Surface chemistry mediated direct optical patterning represents an emerging strategy for incorporating colloidal nanocrystals (NCs) in integrated optoelectronic platforms including displays and image sensors. However, the role of photochemistry of crosslinkers and other photoactive species in patterning remains elusive. Here we show the design of nitrene- and carbene-based photocrosslinkers can strongly affect the patterning capabilities and photophysical properties of NCs, especially quantum dots (QDs). Their role beyond physical linkers stems from structure-dictated electronic configuration, energy alignment and associated reaction kinetics and thermodynamics. Patterned QD layers with designed carbene-based crosslinkers fully preserve their photoluminescent and electroluminescent properties. Patterned light emitting diodes (QLEDs) show a maximum external quantum efficiency of ≈12 % and lifetime over 4800 h, among the highest for reported patterned QLEDs. These results would guide the rational design of photoactive species in NC patterning and create new possibilities in the monolithic integration of NCs in high-performance device platforms.

15.
Small ; 17(28): e2100832, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34117841

ABSTRACT

Developing highly efficient, low-cost electrocatalysts with long-time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large-scale commercialization of hydrogen production from water electrolysis. Herein, the Cr-doped CoP nanorod arrays on carbon cloth (Cr-CoP-NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm-2 , respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm-2 . The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr-CoP-NR/CC catalyst shows the potential to replace the costly Pt-based HER catalysts in the water electrolyzer.

16.
Pancreatology ; 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33933371

ABSTRACT

PURPOSE: The purpose of the multi-institutional retrospective study was to evaluate whether intraoperative radiotherapy (IORT) has advantages in the treatment of patients with locally advanced pancreatic cancer (LAPC) compared with concurrent chemoradiotherapy (CCRT). PATIENTS AND METHODS: A total of 103 patients with LAPC whom was treated with IORT (Arm A; n = 50) or CCRT (Arm B; n = 53) from 2015.6 to 2016.7 were retrospectively identified. Data on feasibility, toxicity, and overall survival (OS) were evaluated. RESULTS: Most factors of the two cohorts were similar. The severe adverse events (grade 3 and 4) patients in Arm B were higher than patients in Arm A (34% vs 0%). Disease progression was noted in 38 patients (76%) in Arm A and 37 patients (69.8%) in Arm B. The median survival of patients in Arm A and B were 15.3 months (95% CI, 13.0-17.6 months) and 13.8 months (95% CI, 11.0-16.6 months), respectively. The 1-year survival rate were 66.3% in Arm A (95% CI, 52.3%-80.2%) and 60.9% in Arm B (95% CI, 46.4%-75.4%). There was no significant difference in OS between patients treated with IORT and with CCRT (p = 0.458). CONCLUSION: Our results demonstrated that patients with LAPC treated with IORT showed fewer adverse events, less treatment time, and high feasibility compared to CCRT. Although, IORT has no advantages in survival and tumor control compared with CCRT.

17.
Anal Bioanal Chem ; 413(5): 1313-1320, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33404744

ABSTRACT

This study aimed to use micro-FTIR with transmission mode to investigate cellulose crystallinity of developing cotton fibers. Compared with ATR-FTIR method, we found that micro-FTIR can obtain more information of cellulose inside of the developing cotton fibers, especially in high wavenumber of 2800-3000 cm-1 region. Combined with curve fitting method, a new IR crystallinity index (CI) method named wax crystallinity index (WCI) was introduced to evaluate the cellulose crystallinity in the development of cotton fibers based on the peak and area ratios of 2900 cm-1/2850 cm-1 and 2900 cm-1/2920 cm-1. The obtained WCI values demonstrated an excellent coefficient of determination with X-ray diffraction (XRD) CI method with the value up to 0.99. This study suggested that micro-FTIR was an effective technique to qualitatively analyze the crystallinity in developing cotton fibers combined with curve fitting method.


Subject(s)
Cellulose/analysis , Cotton Fiber/analysis , Spectroscopy, Fourier Transform Infrared/methods , Crystallization , X-Ray Diffraction
18.
Med Sci Monit ; 27: e931868, 2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34599137

ABSTRACT

BACKGROUND The value of alkaline phosphatase and cholesterol for predicting overall survival (OS) in cancer patients has been previously studied. However, the predictive value of these variables in patients with pancreatic ductal adenocarcinoma (PDAC) was limited. Hence, we conducted this study to investigate the prognostic value of the alkaline phosphatase-to-cholesterol ratio (ACR) in patients undergoing radical pancreaticoduodenectomy (PD) for PDAC. MATERIAL AND METHODS A total of 102 PDAC patients undergoing radical PD at the Cancer Hospital Chinese Academy of Medical Sciences were retrospectively enrolled based on medical records from June 2009 to June 2019. R programming language was used for the optimal cutoff value of biological markers such as preoperative ACR. Kaplan-Meier method and log-rank test were used for univariate survival analysis, and a Cox regression model was used for multivariate survival analysis. RESULTS The optimal cutoff value of preoperative ACR was 32.988. Patients with higher preoperative ACR values had worse OS (P<0.001). Higher preoperative ACR was significantly correlated with the degree of tumor differentiation (P<0.018); levels of alanine aminotransferase (P<0.001), aspartate aminotransferase (P<0.001), total bilirubin (P<0.001), and carbohydrate antigen 19-9 (P=0.016); and clinical symptoms (P=0.001). Multivariate analysis showed that tumor differentiation (P<0.001), ACR value (hazard ratio [HR]: 2.225, 95% confidence interval [CI]: 1.33-3.724, P=0.002), and sex (HR, 1.725, 95% CI: 1.1-2.704, P=0.018) were independent factors associated with the prognosis of PDAC patients undergoing radical PD. CONCLUSIONS The preoperative ACR was correlated with OS in pancreatic cancer patients undergoing radical pancreaticoduodenectomy. Elevated ACR was correlated with poor OS.


Subject(s)
Adenocarcinoma/blood , Alkaline Phosphatase/blood , Carcinoma, Pancreatic Ductal/blood , Cholesterol/blood , Pancreatic Neoplasms/blood , Pancreaticoduodenectomy/methods , Preoperative Care/methods , Adenocarcinoma/mortality , Adenocarcinoma/surgery , Adult , Aged , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/surgery , China , Female , Humans , Male , Middle Aged , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/surgery , Predictive Value of Tests , Prognosis , Sensitivity and Specificity , Survival Analysis
19.
Med Sci Monit ; 27: e932518, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34689148

ABSTRACT

BACKGROUND We designed an association study among 267 cases of children with sepsis and 283 healthy controls, by genotyping 9 variants in the VDR gene. MATERIAL AND METHODS This was a hospital-based, case-control, genetic association study. In addition to 3 genetic modes of inheritance, haplotype and interaction analyses were employed to examine the prediction of VDR gene for pediatric sepsis. Effect-size estimates are expressed as odds ratio (OR) and 95% confidence interval (CI). RESULTS Two variants in the VDR gene, rs2107301 and rs2189480, were found to play a leading role in susceptibility to sepsis in children. The mutant homozygotes of rs2107301 (CC) and rs2189480 (CC) were associated with a reduced risk of sepsis compared with the corresponding wild homozygotes (OR: 0.44 and 0.43, 95% CI: 0.21-0.92 and 0.23-0.81, p: 0.03 and 0.009, respectively). The mutations of rs2107301-C and rs2189480-C alleles were associated with reduced sepsis risk. Haplotype C-C-C-C-C-T-C-A-G in the VDR gene was significantly associated with a 0.59-fold decreased risk of sepsis (95% CI: 0.12-0.76, p: 0.02). In the haplotype-phenotype analysis, significant association was noted for high-density lipoprotein, even after simulation correction (psim <0.05). CONCLUSIONS Taken together, our findings indicate that the VDR gene may be a sepsis-susceptibility gene in Chinese Han children.


Subject(s)
Receptors, Calcitriol/genetics , Sepsis/genetics , Case-Control Studies , Child , Child, Preschool , China , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Polymorphism, Single Nucleotide
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(3): 473-482, 2021 Jun 25.
Article in Zh | MEDLINE | ID: mdl-34180192

ABSTRACT

The brain-computer interface (BCI) systems used in practical applications require as few electroencephalogram (EEG) acquisition channels as possible. However, when it is reduced to one channel, it is difficult to remove the electrooculogram (EOG) artifacts. Therefore, this paper proposed an EOG artifact removal algorithm based on wavelet transform and ensemble empirical mode decomposition. Firstly, the single channel EEG signal is subjected to wavelet transform, and the wavelet components which involve EOG artifact are decomposed by ensemble empirical mode decomposition. Then the predefined autocorrelation coefficient threshold is used to automatically select and remove the intrinsic modal functions which mainly composed of EOG components. And finally the 'clean' EEG signal is reconstructed. The comparative experiments on the simulation data and the real data show that the algorithm proposed in this paper solves the problem of automatic removal of EOG artifacts in single-channel EEG signals. It can effectively remove the EOG artifacts when causes less EEG distortion and has less algorithm complexity at the same time. It helps to promote the BCI technology out of the laboratory and toward commercial application.


Subject(s)
Artifacts , Wavelet Analysis , Algorithms , Computer Simulation , Electroencephalography , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL