Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
J Dairy Sci ; 106(6): 3779-3790, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37105875

ABSTRACT

Antibacterial peptides can be released from yak milk casein. To date, the amino acid sequences and mechanism of action of yak casein-derived antibacterial peptides remain unknown. The current study identified antibacterial peptides from yak casein and their molecular mechanism of action. Our results showed that yak α-casein, ß-casein, and κ-casein could be effectively hydrolyzed by Flavourzyme (Solarbio Science and Technology Co. Ltd.), and the 2-h hydrolysate showed the highest antibacterial rate of 43.07 ± 2.59% against Staphylococcus aureus. The 1,000 to 3,000 Da fraction accounted for 23.61% of the 2-h hydrolysate and had an antibacterial rate of 62.64 ± 4.40%. Three novel peptides with antibacterial activity were identified from this fraction, and the ß-casein-derived peptide APKHKEMPFPKYP showed the strongest antibacterial effect (half-maximal inhibitory concentration = 0.397 mg/mL). Molecular docking predicted that APKHKEMPFPKYP interacted with 2 important enzymes of Staph. aureus, dihydrofolate reductase and DNA gyrase, through hydrophobic, hydrogen bonding, salt bridge, and π-π stacking interactions. Our findings suggest that the yak casein-derived peptides may serve as a potential source of natural preservatives to inhibit Staph. aureus.


Subject(s)
Caseins , Staphylococcus aureus , Cattle , Animals , Caseins/chemistry , Staphylococcus aureus/metabolism , Molecular Docking Simulation , Peptides/pharmacology , Anti-Bacterial Agents/pharmacology
2.
J Nanosci Nanotechnol ; 19(2): 810-818, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30360157

ABSTRACT

Hydroxyapatite (HA) nanocoating was electrodeposited on the surface mechanical attrition treated (SMATed) AZ31 magnesium alloy. Phases, morphologies and the adhesion of coating were characterized by X-ray diffraction, scanning electron microscopy (SEM) and 3D optical profiler. The corrosion resistance of the HA coating was tested by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the HA coating on SMATed sample had a better crystallization than that on original one. The thickness of HA coating increased from 25 to 40 µm. The bonding strength between HA coating and SMATed substrate was higher than that between the coating and untreated counterpart. Potentiodynamic polarization and EIS demonstrated that the corrosion current density of HA coating on SMATed substrate decreased by 30.84% than that on original. The corrosion potential shifted 80.3 mV to the positive direction. The corrosion resistance of coatings on SMATed sample was significantly enhanced. The immersion experiments showed that the HA coatings on SMATed sample exhibited a better biological activity.

3.
Int J Mol Sci ; 20(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614571

ABSTRACT

Heat stress (HS), caused by extremely high temperatures, is one of the most severe forms of abiotic stress in pepper. In the present study, we studied the transcriptome and metabolome of a heat-tolerant cultivar (17CL30) and a heat-sensitive cultivar (05S180) under HS. Briefly, we identified 5754 and 5756 differentially expressed genes (DEGs) in 17CL30 and 05S180, respectively. Moreover, we also identified 94 and 108 differentially accumulated metabolites (DAMs) in 17CL30 and 05S180, respectively. Interestingly, there were many common HS-responsive genes (approximately 30%) in both pepper cultivars, despite the expression patterns of these HS-responsive genes being different in both cultivars. Notably, the expression changes of the most common HS-responsive genes were typically much more significant in 17CL30, which might explain why 17CL30 was more heat tolerant. Similar results were also obtained from metabolome data, especially amino acids, organic acids, flavonoids, and sugars. The changes in numerous genes and metabolites emphasized the complex response mechanisms involved in HS in pepper. Collectively, our study suggested that the glutathione metabolic pathway played a critical role in pepper response to HS and the higher accumulation ability of related genes and metabolites might be one of the primary reasons contributing to the heat resistance.


Subject(s)
Capsicum/growth & development , Gene Expression Profiling/methods , Metabolomics/methods , Plant Proteins/genetics , Amino Acids/chemistry , Capsicum/chemistry , Capsicum/genetics , Flavonoids/chemistry , Gene Expression Regulation, Plant , Heat-Shock Response , Metabolic Networks and Pathways , Sugars/chemistry
4.
Food Chem X ; 21: 101150, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38312485

ABSTRACT

Fermented-chopped pepper is a widely consumed condiment in China due to its attractive flavor. Chopped pepper seed (CPS) is the byproduct generated during the production of chopped pepper and is generally discarded as waste. In this study, the volatile organic compounds (VOCs) and nutritional value of three varieties of CPS were investigated. Results indicated that the nutritional compositions of the three CPS varieties exhibited significant differences. All CPS samples contained 17 amino acids and were rich in fatty acids, with unsaturated fatty acids being predominant and accounting for 79 % of the total fatty acids. A total of 53 VOCs were identified by gas chromatography-ion mobility spectrometry, which could be classified into 9 groups, with aldehydes, esters, and alcohols comprising the three largest groups. The three varieties of CPS had remarkably varied aromas whereas there are five key VOCs (i.e., 2-pentylfuran, methional, ethyl 3-methylbutanoate, dimethyl disulfide, and nonanal) in all CPS samples. Network correlation analysis revealed that VOCs are closely correlated with amino and fatty acids. Thus, this study provides a useful basis for understanding the nutritional values and flavor characteristics of different CPS varieties, which could be used as an ingredient and might have great potential in the food industry.

5.
Life (Basel) ; 13(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37109467

ABSTRACT

(1) Background: There is growing interest in using insects to treat nutrient-rich organic wastes, such as the black soldier fly (BSF), one of the most efficient organic waste recyclers for upcycling nutrients into the food system. Although biochar (BC) was shown to enhance nutrient retention and the final product quality during the composting of livestock and poultry manure in many previous studies, little information is available on the effect of BC on livestock manure bioconversion by black soldier fly larvae (BSFL). (2) Methods: This study investigated the effect of adding a small amount of BC to chicken manure (CM) on the bioconversion system of the black soldier fly (including N2O and NH3 emissions and the final distribution of nitrogen during the treatment process). (3) Results: The lowest N2O and NH3 emission and highest residual nitrogen in the substrate were observed in the 15% BC treatment. The highest bioconversion rate of CM (8.31%) and the peak of larval biomass was obtained in the 5% BC treatment. (4) Conclusions: The results demonstrate the feasibility of adding 5% BC to reduce pollution and achieve a satisfactory BSFL-based CM bioconversion efficiency.

6.
Food Chem X ; 19: 100811, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780291

ABSTRACT

In this study, the solid-state fermentation (SSF) of dark tea was carried out using Bacillus subtilis LK-1, which was isolated from Fu brick tea (FBT). The effects of SSF with B. subtilis on volatile organic compounds (VOCs), non-volatile metabolites, and antioxidant activities of dark tea was investigated. A total of 45 VOCs were identified, primarily consisting of ketones (18), hydrocarbons (8), aldehydes (7), and alcohols (6). Following fermentation, the content of key odor active substances such as linalool, ß-ionone, and 3,5-octadiene-2-one significantly increased, resulting in an enhanced floral and fruity aroma of dark tea. Furthermore, new flavor substances like geranyl isovalerate and decanal were produced during SSF, enriching the aroma profile of dark tea. Non-ester catechins demonstrated a drastic increase, while ester catechins remarkably decreased after SSF. Furthermore, SSF led to a slight decrease in the total polyphenols content and antioxidant activity of dark tea. There is a close relationship between VOCs and the main non-volatile metabolites during SSF. Overall, this study highlighted the great impact of SSF with B. subtilis on the metabolites of dark tea and provided valuable insights into the role of bacteria in shaping the metabolite profile of FBT.

7.
Curr Res Food Sci ; 5: 1788-1807, 2022.
Article in English | MEDLINE | ID: mdl-36268133

ABSTRACT

Although aroma is one of the most essential factors determining the quality of Fu brick tea (FBT), the aroma profiles of FBTs from different manufacturing areas are rarely investigated. The aroma profiles of FBTs manufactured in five typical provinces of China were comprehensively analyzed on the basis of headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), sensory evaluation, odor activity value (OAV), and relative odor activity value (ROAV). HS-GC-IMS and HS-SPME-GC-MS identified 63 and 93 volatile organic compounds (VOCs), respectively. Multivariate statistical analysis indicated that the FBTs from different production regions had remarkably varied aromas. HS-SPME-GC-MS revealed that 27 VOCs (OAV >1) contributed to the overall aroma of the samples, of which 15 key differential compounds can effectively distinguish the aroma profiles of different FBTs. FBT from Shaanxi manifested a strong floral and fruity aroma; that from Hunan had a floral, grassy, and pine-woody aroma; that from Guizhou presented a grassy and herbal aroma; that from Guangxi exhibited a sweet, floral, and minty aroma; and that from Zhejiang possessed various fruit flavors and floral fragrance. OAV analysis identified the biomarkers responsible for the variation in the aroma characteristics of diverse FBTs. These biomarkers included linalool, 6-methyl-5-hepten-2-one, α-ionone, hexanal, and ethyl hexanoate. Sensory evaluation demonstrated that the infusion color and aroma of FBT samples from different provinces also greatly varied. Network correlation analysis revealed that Aspergillus and Eurotium were the crucial microorganisms for the metabolism and formation of VOCs. These findings provide new insight into the VOCs and fragrance features of FBTs produced in different regions of China.

8.
Foods ; 11(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36429217

ABSTRACT

Inhibition of dipeptidyl peptidase-4 (DPP-4) is an effective way to control blood glucose in diabetic patients. Tenebrio (T.) molitor is an edible insect containing abundant protein. T. molitor protein-derived peptides can suppress the DPP-4 activity. However, the amino acid sequence and binding mechanism of these DPP-4 inhibitory peptides remain unclear. This study used the flavourzyme for T. molitor protein hydrolysis, identified the released peptides with DPP-4 inhibitory effect, and investigated the binding interactions of these peptides with DPP-4. The results showed that flavourzyme efficiently hydrolyzed the T. molitor protein, as demonstrated by the high degree of hydrolysis, disappearance of protein bands in SDS-PAGE, and changes to protein structure. The 4-h flavourzyme hydrolysates showed a good inhibitory effect on DPP-4 (IC50 value of 1.64 mg/mL). The fragment of 1000-3000 Da accounted for 10.39% of the total peptides, but showed the strongest inhibitory effect on DPP-4. The peptides LPDQWDWR and APPDGGFWEWGD were identified from this fraction, and their IC50 values against DPP-4 were 0.15 and 1.03 mg/mL, respectively. Molecular docking showed that these two peptides interacted with the DPP-4 active site via hydrogen bonding, hydrophobic interactions, salt bridge formation, π-cation interactions, and π-π stacking. Our findings indicated that T. molitor protein-derived peptides could be used as natural DPP-4 inhibitors.

9.
PeerJ ; 9: e11509, 2021.
Article in English | MEDLINE | ID: mdl-34141478

ABSTRACT

BACKGROUND: As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. METHODS: To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. RESULT: In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper cultivars in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher ROS scavenging, photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180.

10.
ACS Appl Mater Interfaces ; 13(7): 8206-8218, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33576615

ABSTRACT

The conversion of asphalt into hexagon-like porous carbon (HPC) with a micro-mesoporous structure is realized by the coupling of template-directing and chemical activation methodologies. The specific surface area of HPC can reach up to 1356 m2 g-1 even at such a low-proportioned dosage of activator (0.5-fold) and is also larger than those of template-directed carbon and activation-derived carbon, as it benefited from the coupling merits of template-directing and chemical activation. Excellent capacitive-energy-storage behavior with respect to rate capability, capacitance retention, and durability are delivered by HPC//HPC symmetric supercapacitors assembled with aqueous and organic electrolytes. This great compatibility for different kinds of electrolytes and electrode properties is owed to the robust hexagon-like microarchitecture feature associated with hierarchical pore structure, which not only hinders the stacking between each other but also provides a buffer function for the volume variation and sufficient active sites for the storage of electrolyte ions. The drastic temperature variation has almost no influence on the diffusion and transfer rate of electrolyte ions, further evidencing the advanced feature of the hierarchical pore structure. Additionally, HPC//Li4Ti5O12 LIC assembled with the Li-based electrolyte also presents a superior Ragone performance. The coexistence of micro- and mesopores for the HPC makes it an attractive electrode material for various capacitive-energy-storage devices. This work provides a promising way to realize the plasticity of pore channels and mass production of high capacitive storage ability of electrode material via the combination of template-directing and chemical activation strategies.

SELECTION OF CITATIONS
SEARCH DETAIL