Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 242
Filter
1.
Nat Mater ; 23(1): 116-123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957269

ABSTRACT

Carbon monoxide (CO) separation relies on chemical adsorption but suffers from the difficulty of desorption and instability of open metal sites against O2, H2O and so on. Here we demonstrate quasi-open metal sites with hidden or shielded coordination sites as a promising solution. Possessing the trigonal coordination geometry (sp2), Cu(I) ions in porous frameworks show weak physical adsorption for non-target guests. Rational regulation of framework flexibility enables geometry transformation to tetrahedral geometry (sp3), generating a fourth coordination site for the chemical adsorption of CO. Quantitative breakthrough experiments at ambient conditions show CO uptakes up to 4.1 mmol g-1 and CO selectivity up to 347 against CO2, CH4, O2, N2 and H2. The adsorbents can be completely regenerated at 333-373 K to recover CO with a purity of >99.99%, and the separation performances are stable in high-concentration O2 and H2O. Although CO leakage concentration generally follows the structural transition pressure, large amounts (>3 mmol g-1) of ultrahigh-purity (99.9999999%, 9N; CO concentration < 1 part per billion) gases can be produced in a single adsorption process, demonstrating the usefulness of this approach for separation applications.

2.
J Am Chem Soc ; 146(20): 13886-13893, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739909

ABSTRACT

Guest-induced (crystal-to-crystal) transformation, i.e., periodic flexibility, is a typical feature of molecule-based crystalline porous materials, but its role for adsorptive separation is controversial. On the other hand, aperiodic flexibility is rarely studied. This work reports a pair of isomeric Cu(I) triazolate frameworks, namely, α-[Cu(fetz)] (MAF-2Fa) and ß-[Cu(fetz)] (MAF-2Fb), which show typical periodic and aperiodic flexibility for CO chemical adsorption, respectively. Quantitative mixture breakthrough experiments show that, while MAF-2Fa exhibits high adsorption capacity at high pressures but negligible adsorption below the threshold pressure and with leakage concentrations of 3-8%, MAF-2Fb exhibits relatively low adsorption capacity at high pressures but no leakage (residual CO concentration <1 ppb). Tandem connection of MAF-2Fa and MAF-2Fb can combine their advantages of high CO adsorption capacities at high and low pressures, respectively. MAF-2Fa and MAF-2Fb can both keep the separation performances unchanged at high relative humidities, but only MAF-2Fb shows a unique coadsorption behavior at a relative humidity of 82%, which can be used to improve purification performances.

3.
J Am Chem Soc ; 146(19): 12969-12975, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38625041

ABSTRACT

Separation of methanol/benzene azeotrope mixtures is very challenging not only by the conventional distillation technique but also by adsorbents. In this work, we design and synthesize a flexible Ca-based metal-organic framework MAF-58 consisting of cheap raw materials. MAF-58 shows selective methanol-induced pore-opening flexibility. Although the opened pores are large enough to accommodate benzene molecules, MAF-58 shows methanol/benzene molecular sieving with ultrahigh experimental selectivity, giving 5.1 mmol g-1 high-purity (99.99%+) methanol and 2.0 mmol g-1 high-purity (99.97%+) benzene in a single adsorption/desorption cycle. Computational simulations reveal that the preferentially adsorbed, coordinated methanol molecules act as the gating component to selectively block the diffusion of benzene, offering a new gating adsorption mechanism.

4.
Small ; : e2402028, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970557

ABSTRACT

2D-3D tin-based perovskites are considered as promising candidates for achieving efficient lead-free perovskite solar cells (PSCs). However, the existence of multiple low-dimensional phases formed during the film preparation hinders the efficient transport of charge carriers. In addition, the non-homogeneous distribution of low-dimensional phases leads to lattice distortion and increases the defect density, which are undesirable for the stability of tin-based PSCs. Here, mixed spacer cations [diethylamine (DEA+) and phenethylamine (PEA+)] are introduced into tin perovskite films to modulate the distribution of the 2D phases. It is found that compared to the film with only PEA+, the combination of DEA+ and PEA+ favors the formation of homogeneous low-dimensional perovskite phases with three octahedral monolayers (n = 3), especially near the bottom interface between perovskite and hole transport layer. The homogenization of 2D phases help improve the film quality with reduced lattice distortion and released strain. With these merits, the tin PSC shows significantly improved stability with 94% of its initial efficiency retained after storing in a nitrogen atmosphere for over 4600 h, and over 80% efficiency maintained after continuous illumination for 400 h.

5.
Bioorg Chem ; 147: 107376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640722

ABSTRACT

The inhibition of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway with small molecules is a promising approach for cancer immunotherapy. Herein, novel small molecules compounds bearing various scaffolds including thiophene, thiazole, tetrahydroquinoline, benzimidazole and indazole were designed, synthesized and evaluated for their inhibitory activity against the PD-1/PD-L1 interaction. Among them, compound Z13 exhibited the most potent activity with IC50 of 189.6 nM in the homogeneous time-resolved fluorescence (HTRF) binding assay. Surface plasmon resonance (SPR) assay demonstrated that Z13 bound to PD-L1 with high affinity (KD values of 231 nM and 311 nM for hPD-L1 and mPD-L1, respectively). In the HepG2/Jurkat T co-culture cell model, Z13 decreased the viability rate of HepG2 cells in a concentration-dependent manner. In addition, Z13 showed significant in vivo antitumor efficacy (TGI = 52.6 % at 40 mg/kg) without obvious toxicity in the B16-F10 melanoma model. Furthermore, flow cytometry analysis demonstrated that Z13 inhibited tumor growth in vivo by activating the tumor immune microenvironment. These findings indicate that Z13 is a promising PD-1/PD-L1 inhibitor deserving further investigation.


Subject(s)
Antineoplastic Agents , B7-H1 Antigen , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Indazoles , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Structure-Activity Relationship , Indazoles/chemistry , Indazoles/pharmacology , Indazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Molecular Structure , Mice , Cell Proliferation/drug effects , Drug Discovery , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Mice, Inbred C57BL , Hep G2 Cells , Cell Survival/drug effects
6.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398568

ABSTRACT

Ionizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, developing an effective treatment for this condition is imperative. Fluacrypyrim (FAPM) is a recognized effective inhibitor of STAT3, which exhibits anti-inflammation and anti-tumor effects in hematopoietic disorders. In this context, the present study aimed to determine whether FAPM could serve as a curative agent in hematopoietic-acute radiation syndrome (H-ARS) after total body irradiation (TBI). The results revealed that the peritoneally injection of FAPM could effectively promote mice survival after lethal dose irradiation. In addition, promising recovery of peripheral blood, bone marrow (BM) cell counts, hematopoietic stem cell (HSC) cellularity, BM colony-forming ability, and HSC reconstituting ability upon FAPM treatment after sublethal dose irradiation was noted. Furthermore, FAPM could reduce IR-induced apoptosis in hematopoietic stem and progenitor cells (HSPCs) both in vitro and in vivo. Specifically, FAPM could downregulate the expressions of p53-PUMA pathway target genes, such as Puma, Bax, and Noxa. These results suggested that FAPM played a protective role in IR-induced hematopoietic damage and that the possible underlying mechanism was the modulation of apoptotic activities in HSCs.


Subject(s)
Apoptosis Regulatory Proteins , Hematopoietic Stem Cells , Pyrimidines , Mice , Animals , Apoptosis Regulatory Proteins/metabolism , Acrylates/pharmacology , Apoptosis , Whole-Body Irradiation , Mice, Inbred C57BL
7.
Angew Chem Int Ed Engl ; : e202317648, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837493

ABSTRACT

Molecular sieving is an ideal separation mechanism, but controlling pore size, restricting framework flexibility, and avoiding strong adsorption are all very challenging. Here, we report a flexible adsorbent showing molecular sieving at ambient temperature and high pressure, even under high humidity. While typical guest-induced transformations are observed, a high transition pressure of 16.6 atm is observed for C2H4 at 298 K because of very weak C2H4 adsorption (~16 kJ mol-1). Also, C2H6 is completely excluded below the pore-opening pressure of 7.7 atm, giving single-component selectivity of ca. 300. Quantitative high-pressure column breakthrough experiments using 1:1 C2H4/C2H6 mixture at 10 atm as input confirms molecular sieving with C2H4 adsorption of 0.73 mmol g-1 or 32 cm3(STP) cm-3 and negligible C2H6 adsorption of 0.001(2) mmol g-1, and the adsorbent can be completely regenerated by inert gas purging. Furthermore, it is highly hydrophobic with negligible water adsorption, and the C2H4/C2H6 separation performance is unaffected at high humidity.

8.
Molecules ; 28(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37241832

ABSTRACT

Crystalline/crystalline blends of polymer have shown advantages in the preparation of new polymeric materials. However, the regulation of co-crystallization in a blend is still full of challenges due to the preferential self-crystallization driven by thermodynamics. Here, an inclusion complex approach is proposed to facilitate the co-crystallization between crystalline polymers, because the crystallization process displays a prominent kinetics advantage when polymer chains are released from the inclusion complex. Poly(butylene succinate) (PBS), poly(butylene adipate) (PBA) and urea are chosen to form co-inclusion complexes, where PBS and PBA chains play as isolated guest molecules and urea molecules construct the host channel framework. The coalesced PBS/PBA blends are obtained by fast removing the urea framework and systematically investigated by differential scanning calorimetry, X-ray diffraction, proton nuclear magnetic resonance and Fourier transformation infrared spectrometry. It is demonstrated that PBA chains are co-crystallized into PBS extended-chain crystals in the coalesced blends, while such a phenomenon has not been detected in simply co-solution-blended samples. Though PBA chains could not be totally accommodated in the PBS extended-chain crystals, their co-crystallized content increases with the initial feeding ratio of PBA. Consequently, the melting point of the PBS extended-chain crystal gradually declines from 134.3 °C to 124.2 °C with an increasing PBA content. The PBA chains playing as defects mainly induce lattice expansion along the a-axis. In addition, when the co-crystals are soaked in tetrahydrofuran, some of the PBA chains are extracted out, leading to damage to the correlative PBS extended-chain crystals. This study shows that co-inclusion complexation with small molecules could be an effective way to promote co-crystallization behavior in polymer blends.

9.
Molecules ; 28(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36838940

ABSTRACT

Exposure to medium and high doses of ionizing radiation (IR) can induce long-term bone marrow (BM) suppression. We previously showed that recombinant human thrombopoietin (rhTPO) significantly promotes recovery from hematopoietic-acute radiation syndrome, but its effect on long-term BM suppression remains unknown. C57BL/6 mice were exposed to 6.5 Gy γ-rays of total body irradiation (TBI) at a dose-rate of 63.01 cGy per minute, and the mice were treated with rhTPO (100 µg; intramuscular injection) or vehicle at 2 h after TBI. All mice were killed one or two months after TBI for analysis of peripheral blood cell counts, long-term hematopoietic stem cell (HSC) frequency, and BM-derived clonogenic activity. The HSC self-renewal capacity was analyzed by BM transplantation. The levels of reactive oxygen species (ROS) production and ratios of γH2AX+ and p16, p53, and p21 mRNA in HSCs were measured by flow cytometry and real-time polymerase chain reaction, respectively. Treatment with rhTPO reduced long-term myelosuppression by improving long-term hematopoietic reconstitution (p < 0.05) after transplantation and resting state maintenance of HSCs (p < 0.05). Moreover, rhTPO treatment was associated with a sustained reduction in long-term ROS production, reduction of long-term DNA damage, diminished p53/p21 mRNA expression, and prevention of senescence after TBI. This study suggests rhTPO is an effective agent for treating IR-induced long-term BM injury because it regulates hematopoietic remodeling and HSC cycle disorder through the ROS/p53/p21/p16 pathway long term after IR.


Subject(s)
Radiation Injuries , Thrombopoietin , Animals , Mice , Hematopoietic Stem Cells , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Recombinant Proteins/metabolism , RNA, Messenger/metabolism , Tumor Suppressor Protein p53/metabolism , Whole-Body Irradiation
10.
J Am Chem Soc ; 144(19): 8676-8682, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35507412

ABSTRACT

Artificial photocatalytic CO2 reduction, using water as the reductant, is challenging mainly because it is difficult for multiple functional units to cooperate efficiently. Here, we show that the classic photosensitive and H2O-oxidizing ruthenium bipyridyl units and CO2-reducing cobalt imidazolate units can be incorporated into a metal-organic framework using a classic organic ligand, imidazo[4,5-f][1,10]phenanthroline. Under visible light without additional sacrificial agents and photosensitizers, the overall conversion of CO2 and H2O to CO and O2 was achieved by the multifunctional photocatalyst in the CH3CN/H2O mixed solvent with a high CO production rate of 11.2 µmol g-1 h-1 and CO selectivity of ca. 100%. Thanks to its ultramicroporous structure with moderately strong CO2 adsorption ability, the photocatalyst also exhibited high performances with CO/CH4 production rates of 5.15/0.62 and 4.26/0.20 µmol g-1 h-1 in the gas phase with pure and even diluted CO2, respectively. Photoluminescence emission spectroscopy and photoelectrochemical tests confirmed that the photosensitive and catalytic units cooperated well to give suitable photocatalytic redox potentials and fast electron-hole separation.


Subject(s)
Metal-Organic Frameworks , Ruthenium , 2,2'-Dipyridyl , Carbon Dioxide/chemistry , Cobalt/chemistry , Metal-Organic Frameworks/chemistry , Ruthenium/chemistry
11.
Pharmacol Res ; 186: 106534, 2022 12.
Article in English | MEDLINE | ID: mdl-36336217

ABSTRACT

Migration, invasion, epithelial-mesenchymal transformation (EMT), and chemotherapeutic resistance are the leading causes of therapeutic failure in people with colorectal cancer (CRC). The migration of exosomal miRNA between cancer cells and the tumor microenvironment is directly associated with malignant behavior in cancer-associated fibroblasts (CAFs). In the context of earlier research, the purpose of the current study was to assess the role and potential mechanism of miR-625-3p released by CAFs in CRC cells. Exosomes were extracted and purified from CAFs conditioned medium by ultracentrifugation. Western blot, immunohistochemistry, CCK-8, transwell assay, H&E staining, Tunnel, real-time PCR, double luciferase assay, RNA-binding protein immunoprecipitation (RIP), and immunofluorescence double staining experiments were used to investigate the effects of CAFs-Exo and miR-625-3p on CRC cell invasion, migration, proliferation, EMT, chemotherapeutic resistance, and molecular mechanisms. The current results indicated that CAFs-Exo was directly internalized by CRC cells, and exosomal miR-625-3p derived from CAFs might promote migration, invasion, EMT and chemotherapeutic resistance in CRC cells by inhibiting the CELF2/WWOX pathway, providing a potential candidate for CRC prediction and treatment.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , MicroRNAs , Humans , Cancer-Associated Fibroblasts/pathology , Epithelial-Mesenchymal Transition , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , CELF Proteins/genetics , CELF Proteins/metabolism , Nerve Tissue Proteins/metabolism , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/metabolism , Tumor Suppressor Proteins/genetics
12.
Inorg Chem ; 61(9): 3970-3980, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35212516

ABSTRACT

Herein, we report a comprehensive study of CO2 hydroboration catalyzed by Mn pincer complexes. The traditional metal-ligand cooperation (MLC) mechanism based on the H-Mn-N-Bpin pincer complex is not viable due to the competing abstraction of the Bpin group from the H-Mn-N-Bpin complex by NaOtBu. Instead, we propose an ionic mechanism based on the H-Mn-N-Na species with a low energy span (22.5 kcal/mol) and unveil the acceleration effect of bases. The X groups in the H-Mn-N-X catalyst models are further modulated, and the steric hindrance and H→B donor-acceptor interactions of the X group increase the energy barrier of the hydride transfer. The hydrogen bond and electrostatic interactions of the X group can accelerate the hydride transfer to HCOOBpin and HCHO molecules except for the nonpolar CO2 molecule. Based on these discoveries, we designed a pyridine-based Mn pincer catalyst system, which could achieve CO2 hydroboration in low-temperature and base-free conditions through a metal-ligand cooperation mechanism.

13.
Plant Dis ; 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35822893

ABSTRACT

Bletilla striata is an important Chinese herbal plant grown widely in southwest China (Qian et al. 2021). Leaf blight was found on cultivated bletilla crops in Yunnan in 2021. The disease infected bletilla leaves and it was present in the field from April to November with the highest incidence (86% plants diseased) recorded in early September in Puer area. Foliar lesions were circular (Φ0.5-1.8 cm) or oval, with pale-gray center and narrow gray-brown outer area surrounded by a yellow halo. The lesions coalesced later to form large irregular spots or blighted areas on leaves. Symptomatic bletilla leaves were sampled from fields in Jiangcheng (E101.8672o, N22.5803o) and Simao (E109.7816o, N22.7891o) counties, Yunnan in July 2021. Seven fungal isolates were obtained from (BJ01-BJ04) and Simao samples (HBJ05-HBJ07) via lesion-tissue culture and hypha-tip purification on PDA medium. A pathogenicity test following Koch's Postulates (Grimms et al. 2006) was conducted using each isolate by inoculating 45-day old bletilla plant (n=30, Zihua cultivar) in a greenhouse through spraying hypha-spore suspension (3.25×104 CFU/mL) prepared with 14 d fresh DNA culture. Non-inoculated plants (n=30) were used as controls. The experiment was repeated once. The isolates BJ02 and HBJ06 (deposited in Yunnan Agric. Univ. Microbes Herbarium) were shown pathogenic to bletilla since similar lesions formed on seedlings 7 d post inoculation and pure fungal cultures with the same colony morphology as those of BJ02 and HBJ06 were re-isolated from leaf lesions 14 dpi. Isolates BJ02 and HBJ06 produced identical colony and conidium morphology after they were incubated at 25oC for 7 d on PDA. Colonies were circular, pale brown, Φ5.5-7.5cm, with villous surface and abundant aerial hyphae. Mycelia were septate, colorless, Φ3-4 µm and with acute-angled branches. Conidiophores developed from hyphae were erect, septate, pale-brown colored and 60-200 µm long. Conidia (produced scarcely and ripened slowly) were long-oval or petaloid, straight or slightly curved, brown, sized 28-45×10-14 µm. Most conidia were divided into 4 cells by 3 septa; the middle two were bigger than the basal and apex cells. Both BJ02 and HBJ06 were identified as Curvularia sp. based on their morphological characters (Tan et al. 2018). The rDNA-ITS, TEF1α and GAPDH genes (Tan et al. 2018) were amplified from these isolates with PCR (White et al. 1990) and sequenced. ITS sequences of the two isolates were both 574 bp (acc. no. OL587997 & OL336480) and 100% (574/574 bp) identical shown by blast comparison. Further blast analyses of ITS (574 bp, OL587997), TEF1α (532 bp, ON637120) and GAPDH (881 bp, ON637121) from isolate BJ02 showed that they were 99.27% (547/551 bp), 100% (842/842 bp) and 99.8% (507/508 bp) identical respectively with those of Curvularia reesii BRIP4358 (MH414907). The 3 genes of BJ02 were concatenated and phylogenic analysis (Tamura et al, 2013) of the concatenated sequence with those of Curvularia spp. showed that BJ02 was clustered with C. reesii BRIP4358 on the same end-branch of the tree with 100% confidence. Therefore, BJ02 and HBJ06 are the same species identified as Curvularia reesii and it is the pathogen causing bletilla leaf blight. C. reesii was first isolated from the air in Australia in 1963 and was named by Tan et al. in 2018. It has not been reported as a plant pathogen elsewhere. This is the first record of this fungus causing bletilla leaf blight in China. Keywords: Bletilla striata; leaf blight; Curvularia reesii; disease symptoms; pathogen morphology; multigene identification References (1) D.J. Grimes. Microbes, 1(5): 223-228, 2006. (2) L.H. Qian et al. Jiangshu Agric. Sci. 49(19): 64-71, 2021. (3) K. Tamura et al. Mol. Bio. & Evol. 30 (12): 2725- 2729, 2013. (4) Y. P. Tan et al. MycoKeys, 35: 1-25. 2018. (5) T.J. White et al. In: PCR Protocols: A Guide to Methods and Applications (eds. M.A. Innis et al.), Acad. Press, Inc. New York. 315-322, 1990.

14.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232671

ABSTRACT

Complement factor I (CFI), a complement inhibitor, is well known for regulating the complement system activation by degrading complement component 3b (C3b) in animal serum, thus becoming involved in innate defense. Nevertheless, the functional mechanisms of CFI in the complement system and in host-pathogen interactions are far from being clarified in teleost fish. In the present study, we cloned and characterized the CFI gene, CiCFI, from grass carp (Ctenopharyngodon idella) and analyzed its function in degrading serum C3b and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiCFI was found to be 2121 bp, encoding 706 amino acids with a molecular mass of 79.06 kDa. The pairwise alignments showed that CiCFI shared the highest identity (66.9%) with CFI from Carassius gibelio and the highest similarity (78.7%) with CFI from Danio rerio. The CiCFI protein was characterized by a conserved functional core Tryp_SPc domain with the catalytic triad and substrate binding sites. Phylogenetic analysis indicated that CiCFI and the homologs CFIs from other teleost fish formed a distinct evolutionary branch. Similar with the CFIs reported in mammals, the recombinant CiCFI protein could significantly reduce the C3b content in the serum, demonstrating the conserved function of CiCFI in the complement system in the grass carp. CiCFI mRNA and protein showed the highest expression level in the liver. After GCRV infection, the mRNA expressions of CiCFI were first down-regulated, then up-regulated, and then down-regulated to the initial level, while the protein expression levels maintained an overall downward trend to the late stage of infection in the liver of grass carps. Unexpectedly, the protein levels of CiCFI were also continuously down-regulated in the serum of grass carps during GCRV infection, while the content of serum C3b proteins first increases and then returns to the initial level, suggesting a distinct role of CiCFI in regulating complement activation and fish-virus interaction. Combining our previous results that complement factor D, a complement enhancer, shows continuously up-regulated expression levels in grass carps during GCRV infection, and this study may provide the further essential data for the full picture of complex complement regulation mechanism mediated by Df and CFI of the grass carp during pathogen infection.


Subject(s)
Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Amino Acids/metabolism , Animals , Carps/genetics , Carps/metabolism , Complement Activation , Complement C3b , Complement Factor D/genetics , Complement Factor I/genetics , Complement Factor I/metabolism , Complement Inactivating Agents , Fish Proteins/metabolism , Gene Expression Regulation , Mammals/metabolism , Phylogeny , RNA, Messenger/genetics , Reoviridae/physiology , Reoviridae Infections/genetics , Reoviridae Infections/veterinary
15.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144675

ABSTRACT

α-Galactosidase (EC 3.2.1.22) refers to a group of enzymes that hydrolyze oligosaccharides containing α-galactoside-banded glycosides, such as stachyose, raffinose, and verbascose. These enzymes also possess great potential for application in sugar production, and in the feed and pharmaceutical industries. In this study, a strain of Lactosphaera pasteurii (WHPC005) that produces α-galactosidase was identified from the soil of Western Hunan, China. It was determined that the optimal temperature and pH for this α-galactosidase were 45 °C and 5.5, respectively. The activity of α-galactosidase was inhibited by K+, Al3+, Fe3+, fructose, sucrose, lactose, galactose, SDS, EDTA, NaCl, and (NH4)2SO4, and enhanced by Ca2+, Fe2+, Mn2, Zn2+, glucose, and raffinose. The optimal inducer was raffinose, and the optimal induction concentration was 30 µmol/L. The α-galactosidase gene was cloned using random fragment cloning methods. Sequence analysis demonstrated that the open reading frame of the α-galactosidase gene was 1230 bp, which encodes a putative protein of 409 amino acids in length. Bioinformatics analysis showed that the isoelectric point and molecular weight of this α-galactosidase were 4.84 and 47.40 kD, respectively. Random coils, alpha helixes, and beta turns were observed in its secondary structure, and conserved regions were found in the tertiary structure of this α-galactosidase. Therefore, this α-galactosidase-producing bacterial strain has the potential for application in the feed industry.


Subject(s)
Galactose , alpha-Galactosidase , Amino Acids , Carnobacteriaceae , Edetic Acid , Fructose , Galactosides , Glucose , Glycosides , Hydrogen-Ion Concentration , Kinetics , Lactose , Oligosaccharides/chemistry , Raffinose , Sodium Chloride , Soil , Substrate Specificity , Sucrose , alpha-Galactosidase/metabolism
16.
HPB (Oxford) ; 24(3): 342-352, 2022 03.
Article in English | MEDLINE | ID: mdl-34400051

ABSTRACT

BACKGROUND: This study aimed to investigate the work status of clinicians in China and their management strategy alteration for patients with hepatocellular carcinoma (HCC) during the COVID-19 pandemic. METHODS: A nationwide online questionnaire survey was conducted in 42 class-A tertiary hospitals across China. Experienced clinicians of HCC-related specialties responded with their work status and management suggestions for HCC patients during the pandemic. RESULTS: 716 doctors responded effectively with a response rate of 60.1%, and 664 were included in the final analysis. Overall, 51.4% (341/664) of clinicians reported more than a 60% reduction of the regular workload and surgeons declared the highest proportion of workload reduction. 92.5% (614/664) of the respondents have been using online medical consultation to substitute for the "face-to-face" visits. Adaptive adjustment for the treatment strategy for HCC was made, including the recommendations of noninvasive and minimally invasive treatments such as transcatheter arterial chemoembolization for early and intermediate stage. Targeted therapy has been the mainstay for advanced stage and also as a bridge therapy for resectable HCC. DISCUSSION: During the COVID-19 pandemic, online medical consultation is recommended to avoid social contact. Targeted therapy as a bridge therapy is recommended for resectable HCC considering the possibility of delayed surgery.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/therapy , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/epidemiology , Liver Neoplasms/therapy , Pandemics , SARS-CoV-2 , Surveys and Questionnaires
17.
Angew Chem Int Ed Engl ; 61(28): e202204967, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35510692

ABSTRACT

Cu-based metal-organic frameworks have attracted much attention for electrocatalytic CO2 reduction, but they are generally instable and difficult to control the product selectivity. We report flexible Cu(I) triazolate frameworks as efficient, stable, and tunable electrocatalysts for CO2 reduction to C2 H4 /CH4 . By changing the size of ligand side groups, the C2 H4 /CH4 selectivity ratio can be gradually tuned and inversed from 11.8 : 1 to 1 : 2.6, giving C2 H4 , CH4 , and hydrocarbon selectivities up to 51 %, 56 %, and 77 %, respectively. After long-term electrocatalysis, they can retain the structures/morphologies without formation of Cu-based inorganic species. Computational simulations showed that the coordination geometry of Cu(I) changed from triangular to tetrahedral to bind the reaction intermediates, and two adjacent Cu(I) cooperated for C-C coupling to form C2 H4 . Importantly, the ligand side groups controlled the catalyst flexibility by the steric hindrance mechanism, and the C2 H4 pathway is more sensitive than the CH4 one.

18.
BMC Genomics ; 22(1): 243, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33827435

ABSTRACT

BACKGROUND: Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. RESULTS: The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. CONCLUSIONS: The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.


Subject(s)
Coleoptera , Siphonaptera , Animals , Coleoptera/genetics , Evolution, Molecular , Genome , Genomics
19.
Inorg Chem ; 60(8): 5860-5867, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33770433

ABSTRACT

Important recent experimental studies have allowed the isomer-selective identification of the 2-, 3-, and 4-picolyl radicals. The picolyl radicals and their valence isoelectronic P, As, Sb, and Bi congeners are investigated here. For the three observed parent radicals, the theoretical ionization potentials agree with experiment to within 0.02 eV. Two rules are proposed for predicting vertical ionization potentials (EVIE) and relative energies. The EVIE values for these radicals will be higher when large percentages of the SOMO orbitals are distributed on the atoms with greater electronegativities. The cations of these systems were also studied along with the closed-shell methylpyridines and their P, As, Sb, and Bi analogs. The energies for the cationic species will lie lower when high percentages of π natural localized molecular orbitals occur on the more electronegative atoms. The structures of the 2- and 4-isomers strongly depend upon the heteroatoms, with the C-C linkages adopting a single-double alternating bond manner when the heteroatoms become heavier. The 3-isomers adopt roughly equal C-C bond distances with small changes from N to Bi.

20.
Inorg Chem ; 60(16): 11893-11896, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34339188

ABSTRACT

A solvothermal reaction of Zn(NO3)2 and 4-(1H-pyrazol-4-yl)benzoic acid (H2pba) with toluene (Tol) as the template yielded a porous coordination polymer, [Zn(pba)]·0.5Tol, possessing a three-dimensional (3D) fence-like coordination framework based on inclined two-dimensional (2D) fence-like coordination layers. By virtue of the classic deformation mode of the 2D/3D fence structures, the guest-free structure exhibits very large positive thermal expansion of 347 MK-1 and moderate negative thermal expansion of -63/-83 MK-1, which are remarkably enhanced to new records of 689 and -171/-249 MK-1, respectively, by inclusion of Tol.

SELECTION OF CITATIONS
SEARCH DETAIL