Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Cell ; 184(2): 404-421.e16, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33357445

ABSTRACT

Hepatocellular carcinoma (HCC) has high relapse and low 5-year survival rates. Single-cell profiling in relapsed HCC may aid in the design of effective anticancer therapies, including immunotherapies. We profiled the transcriptomes of ∼17,000 cells from 18 primary or early-relapse HCC cases. Early-relapse tumors have reduced levels of regulatory T cells, increased dendritic cells (DCs), and increased infiltrated CD8+ T cells, compared with primary tumors, in two independent cohorts. Remarkably, CD8+ T cells in recurrent tumors overexpressed KLRB1 (CD161) and displayed an innate-like low cytotoxic state, with low clonal expansion, unlike the classical exhausted state observed in primary HCC. The enrichment of these cells was associated with a worse prognosis. Differential gene expression and interaction analyses revealed potential immune evasion mechanisms in recurrent tumor cells that dampen DC antigen presentation and recruit innate-like CD8+ T cells. Our comprehensive picture of the HCC ecosystem provides deeper insights into immune evasion mechanisms associated with tumor relapse.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Single-Cell Analysis , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Gene Expression Regulation, Neoplastic , Humans , Killer Cells, Natural/immunology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Myeloid Cells/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Phenotype , RNA-Seq , Tumor Microenvironment
2.
Nat Immunol ; 23(7): 1021-1030, 2022 07.
Article in English | MEDLINE | ID: mdl-35794369

ABSTRACT

Interleukin-33 (IL-33), an epithelial cell-derived cytokine that responds rapidly to environmental insult, has a critical role in initiating airway inflammatory diseases. However, the molecular mechanism underlying IL-33 secretion following allergen exposure is not clear. Here, we found that two cell events were fundamental for IL-33 secretion after exposure to allergens. First, stress granule assembly activated by allergens licensed the nuclear-cytoplasmic transport of IL-33, but not the secretion of IL-33. Second, a neo-form murine amino-terminal p40 fragment gasdermin D (Gsdmd), whose generation was independent of inflammatory caspase-1 and caspase-11, dominated cytosolic secretion of IL-33 by forming pores in the cell membrane. Either the blockade of stress granule assembly or the abolishment of p40 production through amino acid mutation of residues 309-313 (ELRQQ) could efficiently prevent the release of IL-33 in murine epithelial cells. Our findings indicated that targeting stress granule disassembly and Gsdmd fragmentation could reduce IL-33-dependent allergic airway inflammation.


Subject(s)
Allergens , Interleukin-33 , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Caspase 1/metabolism , Inflammation , Interleukin-1beta/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Peptide Hydrolases/metabolism , Stress Granules
3.
J Biol Chem ; 299(9): 105177, 2023 09.
Article in English | MEDLINE | ID: mdl-37611825

ABSTRACT

Translational regulation is one of the decisive steps in gene expression, and its dysregulation is closely related to tumorigenesis. Eukaryotic translation initiation factor 3 subunit i (eIF3i) promotes tumor growth by selectively regulating gene translation, but the underlying mechanisms are largely unknown. Here, we show that eIF3i is significantly increased in colorectal cancer (CRC) and reinforces the proliferation of CRC cells. Using ribosome profiling and proteomics analysis, several genes regulated by eIF3i at the translation level were identified, including D-3-phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in the de novo serine synthesis pathway that participates in metabolic reprogramming of tumor cells. PHGDH knockdown significantly represses CRC cell proliferation and partially attenuates the excessive growth induced by eIF3i overexpression. Mechanistically, METTL3-mediated N6-methyladenosine modification on PHGDH mRNA promotes its binding with eIF3i, ultimately leading to a higher translational rate. In addition, knocking down eIF3i and PHGDH impedes tumor growth in vivo. Collectively, this study not only uncovered a novel regulatory mechanism for PHGDH translation but also demonstrated that eIF3i is a critical metabolic regulator in human cancer.


Subject(s)
Colorectal Neoplasms , Eukaryotic Initiation Factor-3 , Gene Expression Regulation, Neoplastic , Phosphoglycerate Dehydrogenase , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/physiopathology , Methyltransferases/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Up-Regulation , Gene Knockdown Techniques , Gene Expression Regulation, Neoplastic/genetics , Animals , Mice , Mice, Inbred BALB C , Female , Heterografts
4.
Nanotechnology ; 34(15)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36649649

ABSTRACT

Battery safety calls for solid state batteries and how to prepare solid electrolytes with excellent performance are of significant importance. In this study, hybrid solid electrolytes combined with organic PVDF-HFP and inorganic active fillers are studied. The modified active fillers of Li7-x-3yAlyLa3Zr2-xTaxO12are obtained by co-element doping with Al and Ta when LLZO is synthesized by calcination. And an high room temperature ionic conductivity of 5.357 × 10-4S cm-1is exhibited by ATLLZO ceramic sheet. The composite solid electrolyte PVDF-HFP/LiTFSI/ATLLZO (PHL-ATLLZO) is prepared by solution casting method, and its electrochemical properties are investigated. The results show that when the contents of lithium salt LiTFSI and active filler ATLLZO are controlled at 40 wt% and 10%, respectively, the ionic conductivity of the resulting composite solid electrolyte is as high as 2.686 × 10-4S cm-1at room temperature, and a wide electrochemical window of 4.75 V is exhibited. The LiFePO4/PHL-ATLLZO/Li all-solid-state battery assembled based on the composite solid-state electrolyte exhibits excellent cycling stability at room temperature. The cell assembled by casting the composite solid-state electrolyte on the cathode surface shows a discharge specific capacity of 134.3 mAh g-1and 96.2% capacity retention after 100 cycles at 0.2 C. The prepared composite solid-state electrolyte demonstrates excellent electrochemical performance.

5.
Proc Natl Acad Sci U S A ; 117(6): 3083-3092, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31980528

ABSTRACT

Inflammatory bowel disease (IBD) comprises chronic relapsing disorders of the gastrointestinal tract characterized pathologically by intestinal inflammation and epithelial injury. Here, we uncover a function of extracellular matrix protein 1 (ECM1) in promoting the pathogenesis of human and mouse IBD. ECM1 was highly expressed in macrophages, particularly tissue-infiltrated macrophages under inflammatory conditions, and ECM1 expression was significantly induced during IBD progression. The macrophage-specific knockout of ECM1 resulted in increased arginase 1 (ARG1) expression and impaired polarization into the M1 macrophage phenotype after lipopolysaccharide (LPS) treatment. A mechanistic study showed that ECM1 can regulate M1 macrophage polarization through the granulocyte-macrophage colony-stimulating factor/STAT5 signaling pathway. Pathological changes in mice with dextran sodium sulfate-induced IBD were alleviated by the specific knockout of the ECM1 gene in macrophages. Taken together, our findings show that ECM1 has an important function in promoting M1 macrophage polarization, which is critical for controlling inflammation and tissue repair in the intestine.


Subject(s)
Extracellular Matrix Proteins/metabolism , Inflammatory Bowel Diseases/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Animals , Arginase/metabolism , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Inflammatory Bowel Diseases/pathology , Intestines/pathology , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Mice , Mice, Knockout , STAT5 Transcription Factor/metabolism , Signal Transduction
6.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902370

ABSTRACT

Histone modification regulates replication-coupled nucleosome assembly, DNA damage repair, and gene transcription. Changes or mutations in factors involved in nucleosome assembly are closely related to the development and pathogenesis of cancer and other human diseases and are essential for maintaining genomic stability and epigenetic information transmission. In this review, we discuss the role of different types of histone posttranslational modifications in DNA replication-coupled nucleosome assembly and disease. In recent years, histone modification has been found to affect the deposition of newly synthesized histones and the repair of DNA damage, further affecting the assembly process of DNA replication-coupled nucleosomes. We summarize the role of histone modification in the nucleosome assembly process. At the same time, we review the mechanism of histone modification in cancer development and briefly describe the application of histone modification small molecule inhibitors in cancer therapy.


Subject(s)
Neoplasms , Nucleosomes , Humans , DNA Replication , Histone Code , Protein Processing, Post-Translational
7.
Allergy ; 77(7): 2104-2120, 2022 07.
Article in English | MEDLINE | ID: mdl-34995358

ABSTRACT

BACKGROUND: Organisms have orchestrated coagulation and immune systems. Although a link between inflammation and haemostasis has been reported in asthma, the interaction mechanism has not been completely elucidated. Here, we investigated the direct link between the mammalian immune and coagulation systems. METHODS: Mice were administered protease or antigens intranasally to induce airway inflammation with or without thrombin inhibitors treatment. The effects of thrombin and its inhibitors on interleukin (IL)-33 were investigated both in vivo and in vitro. Peripheral blood mononuclear cells (PBMCs) and plasma from asthma patients are collected to verify the correlation between thrombin and group 2 innate lymphocytes (ILC2s). RESULTS: Low-molecular-weight heparin (LMWH, an indirect inhibitor of thrombin) restrained both papain- and fungus-induced type 2 immune responses in mice by inhibiting IL-33 cleavage. Upon examining the potential thrombin protease consensus sites, we found that IL-33 was directly cleaved by thrombin at specific amino acids (R48 and R106) to generate a mature form of IL-33 with potent biological activity. In addition, we found that bivalirudin TFA (a direct inhibitor of thrombin) inhibited a variety of type 2 inflammatory responses, such as those in house dust mite (HDM)- and ovalbumin (OVA)-mediated pulmonary inflammation models. We found that plasma thrombin-antithrombin complex (TATc) levels in asthma patients were positively associated with the number and function of IL-33-responder group 2 innate lymphocytes (ILC2s) among peripheral blood mononuclear cells (PBMCs) from asthma patients. CONCLUSION: The data suggested that thrombin inhibitors administration could be effective in treating lung inflammation by regulating ILC2s via IL-33 maturation, indicating that targeting thrombin is a potential way to treat allergic diseases.


Subject(s)
Alveolitis, Extrinsic Allergic , Asthma , Pulmonary Eosinophilia , Animals , Cytokines/metabolism , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/pharmacology , Immunity, Innate , Inflammation/metabolism , Interleukin-33/metabolism , Leukocytes, Mononuclear/metabolism , Lung , Lymphocytes , Mice , Thrombin/metabolism , Thrombin/pharmacology
8.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293428

ABSTRACT

Liver fibrosis results from repeated and persistent liver damage. It can start with hepatocyte injury and advance to inflammation, which recruits and activates additional liver immune cells, leading to the activation of the hepatic stellate cells (HSCs). It is the primary source of myofibroblasts (MFs), which result in collagen synthesis and extracellular matrix protein accumulation. Although there is no FDA and EMA-approved anti-fibrotic drug, antiviral therapy has made remarkable progress in preventing or even reversing the progression of liver fibrosis, but such a strategy remains elusive for patients with viral, alcoholic or nonalcoholic steatosis, genetic or autoimmune liver disease. Due to the complexity of the etiology, combination treatments affecting two or more targets are likely to be required. Here, we review the pathogenic mechanisms of liver fibrosis and signaling pathways involved, as well as various molecular targets for liver fibrosis treatment. The development of efficient drug delivery systems that target different cells in liver fibrosis therapy is also summarized. We highlight promising anti-fibrotic events in clinical trial and preclinical testing, which include small molecules and natural compounds. Last, we discuss the challenges and opportunities in developing anti-fibrotic therapies.


Subject(s)
Liver Cirrhosis , Liver Diseases , Humans , Liver Cirrhosis/metabolism , Hepatic Stellate Cells/metabolism , Liver Diseases/pathology , Extracellular Matrix Proteins/metabolism , Collagen/metabolism , Antiviral Agents/therapeutic use , Liver/metabolism
9.
Gastroenterology ; 157(5): 1352-1367.e13, 2019 11.
Article in English | MEDLINE | ID: mdl-31362006

ABSTRACT

BACKGROUND & AIMS: Activation of TGFB (transforming growth factor ß) promotes liver fibrosis by activating hepatic stellate cells (HSCs), but the mechanisms of TGFB activation are not clear. We investigated the role of ECM1 (extracellular matrix protein 1), which interacts with extracellular and structural proteins, in TGFB activation in mouse livers. METHODS: We performed studies with C57BL/6J mice (controls), ECM1-knockout (ECM1-KO) mice, and mice with hepatocyte-specific knockout of EMC1 (ECM1Δhep). ECM1 or soluble TGFBR2 (TGFB receptor 2) were expressed in livers of mice after injection of an adeno-associated virus vector. Liver fibrosis was induced by carbon tetrachloride (CCl4) administration. Livers were collected from mice and analyzed by histology, immunohistochemistry, in situ hybridization, and immunofluorescence analyses. Hepatocytes and HSCs were isolated from livers of mice and incubated with ECM1; production of cytokines and activation of reporter genes were quantified. Liver tissues from patients with viral or alcohol-induced hepatitis (with different stages of fibrosis) and individuals with healthy livers were analyzed by immunohistochemistry and in situ hybridization. RESULTS: ECM1-KO mice spontaneously developed liver fibrosis and died by 2 months of age without significant hepatocyte damage or inflammation. In liver tissues of mice, we found that ECM1 stabilized extracellular matrix-deposited TGFB in its inactive form by interacting with αv integrins to prevent activation of HSCs. In liver tissues from patients and in mice with CCl4-induced liver fibrosis, we found an inverse correlation between level of ECM1 and severity of fibrosis. CCl4-induced liver fibrosis was accelerated in ECM1Δhep mice compared with control mice. Hepatocytes produced the highest levels of ECM1 in livers of mice. Ectopic expression of ECM1 or soluble TGFBR2 in liver prevented fibrogenesis in ECM1-KO mice and prolonged their survival. Ectopic expression of ECM1 in liver also reduced the severity of CCl4-induced fibrosis in mice. CONCLUSIONS: ECM1, produced by hepatocytes, inhibits activation of TGFB and its activation of HSCs to prevent fibrogenesis in mouse liver. Strategies to increase levels of ECM1 in liver might be developed for treatment of fibrosis.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Extracellular Matrix Proteins/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis, Experimental/prevention & control , Liver/metabolism , Transforming Growth Factor beta/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Hepatic Stellate Cells/pathology , Hepatitis, Alcoholic/metabolism , Hepatitis, Alcoholic/pathology , Hepatitis, Viral, Human/metabolism , Hepatitis, Viral, Human/pathology , Humans , Liver/pathology , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/pathology , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , ATP-Binding Cassette Sub-Family B Member 4
10.
Plant Cell Physiol ; 57(3): 540-57, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26858283

ABSTRACT

Anther development is a very precise and complicated process. In Arabidopsis, the AtMYB80 transcription factor regulates genes involved in pollen development and controls the timing of tapetal programmed cell death (PCD). In this study, we isolated and characterized cDNA for VviMYB80 expressed in flower buds of male-sterile Vitis vinifera L. cv. 'Zhong Shan Hong', a late-maturing cultivar derived from self-progeny of cv. 'Wink'. VviMYB80 belongs to the MYB80 subfamily and clusters with AtMYB35/TDF1 in a distinct clade. We found that in flower buds, expression of the VviMYB80 gene in cv. 'Zhong Shan Hong' sharply increased at the tetrad stage, resulting in a higher and earlier transcript level than that found in cv. 'Wink'. Expression of the VviMYB80 gene, driven by the 35S promoter, caused pleiotropic effects on the stamens, including smaller and shriveled anthers, delayed dehiscence, fewer seeds, shorter anther filaments, distorted pollen shape and a lack of cytoplasm, with the tapetum exhibiting hypertrophy in transformed tobacco. These results suggest that VviMYB80 may play an important role in stamen development and that expression of VviMYB80 driven by the 35S promoter in tobacco induces male sterility.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Nicotiana/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Promoter Regions, Genetic , Vitis/genetics , Biosynthetic Pathways/genetics , Cell Wall/metabolism , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Flowers/cytology , Flowers/growth & development , Flowers/ultrastructure , Gene Expression Regulation, Developmental , Germination , Phenotype , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified , Propanols/metabolism , Sequence Analysis, DNA , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Molecules ; 21(5)2016 May 18.
Article in English | MEDLINE | ID: mdl-27213305

ABSTRACT

To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI) was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD) and a bifunctional R11 (RGD-NLS), which were termed as P123-PEI-R4 and P123-PEI-R11, respectively. Agarose gel electrophoresis showed that both P123-PEI-R4 and P123-PEI-R11 efficaciously condense plasmid DNA at a polymer-to-pDNA w/w ratio of 3.0 and 0.4, respectively. The polyplexes were stable in the presence of serum and could protect plasmid DNA against DNaseI. They had uniform spherical nanoparticles with appropriate sizes around 100-280 nm and zeta-potentials about +40 mV. Furthermore, in vitro experiments showed that these polyplexes had lower cytotoxicity at any concentration compared with PEI 25 kDa, thus giving promise to high transfection efficiency as compared with another P123-PEI derivate conjugated with trifunctional peptide RGD-TAT-NLS (P123-PEI-R18). More importantly, compared with the other polymers, P123-PEI-R11 showed the highest transfection efficiency with relatively lower cytotoxicity at any concentration, indicating that the new synthetic polymer P123-PEI-R11 could be used as a safe and efficient gene deliver vector.


Subject(s)
Gene Transfer Techniques , Genetic Therapy/methods , Nuclear Localization Signals/genetics , Oligopeptides/genetics , Polyethyleneimine/chemistry , DNA , Electrophoresis, Agar Gel , Green Fluorescent Proteins , HeLa Cells , Humans , Molecular Weight , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/therapeutic use , Oligopeptides/chemistry , Oligopeptides/therapeutic use , Plasmids/chemistry , Plasmids/genetics , Polyethyleneimine/therapeutic use , Polymers/chemistry , Polymers/therapeutic use , Transfection/methods
12.
J Biol Chem ; 289(41): 28310-23, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25147179

ABSTRACT

Vascular endothelial growth factor A (VEGFA) is a critical proangiogenic factor that is activated by hypoxia at both the transcriptional and post-transcriptional levels. In hypoxia conditions, stabilized hypoxia-inducible factor 1α (HIF1A) is the key regulator for transcriptional activation of VEGFA. However, the post-transcriptional control of VEGFA expression remains poorly understood. Here, we report that the eukaryotic translation initiation factor 3i (eIF3i) is required for VEGFA protein expression in both normal embryonic and tumorigenic angiogenesis. eIF3i is dynamically expressed in the early stages of zebrafish embryogenesis and in human hepatocellular carcinoma tissues. eIF3i homozygous mutant zebrafish embryos show severe angiogenesis defects and human hepatocellular cancer cells with depletion of eIF3i to induce less angiogenesis in tumor models. Under hypoxia, the HIF1A protein can interact with its binding sequence in the eIF3i promoter and activate eIF3i transcription. The expression of VEGFA, which should rise in hypoxia, is significantly inhibited by eIF3i siRNA treatment. Moreover, eIF3i knockdown did not cause a general translation repression but specifically reduced the translation efficiency of the VEGFA mRNAs. Taken together, our results suggest that eIF3i is induced by HIF1A under hypoxia and controls normal and tumorigenic angiogenesis through regulating VEGFA protein translation.


Subject(s)
Embryo, Nonmammalian/metabolism , Eukaryotic Initiation Factor-3/metabolism , Gene Expression Regulation, Neoplastic , Vascular Endothelial Growth Factor A/metabolism , Zebrafish/genetics , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Embryo, Nonmammalian/blood supply , Eukaryotic Initiation Factor-3/antagonists & inhibitors , Eukaryotic Initiation Factor-3/genetics , Gene Expression Regulation, Developmental , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Molecular Sequence Data , Neovascularization, Pathologic , Neovascularization, Physiologic , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Vascular Endothelial Growth Factor A/genetics , Zebrafish/embryology , Zebrafish/metabolism
13.
Adv Exp Med Biol ; 841: 15-44, 2014.
Article in English | MEDLINE | ID: mdl-25261203

ABSTRACT

The distinctive differentiated states of the CD4+ T helper cells are determined by the set of transcription factors and the genes transcribed by the transcription factors. In vitro induction models, the major determinants of the cytokines present during the T-cell receptor (TCR)-mediated activation process. IL-12 and IFN-γ make Naive CD4+ T cells highly express T-bet and STAT4 and differentiate to TH1 cells, while IL-4 make Naive CD4+ T cells highly express STAT6 and GATA3 and differentiated to TH2 cells. Even through T-bet and GATA3 are master regulators for TH1/TH2 cells differentiation. There are many other transcription factors, such as RUNX family proteins, IRF4, Dec2, Gfi1, Hlx, and JunB that can impair TH1/TH2 cells differentiation. In recent years, noncoding RNAs (microRNA and long noncoding RNA) join in the crowd. The leukocytes should migrate to the right place to show their impact. There are some successful strategies, which are revealed to targeting chemokines and their receptors, that have been developed to treat human immune-related diseases.


Subject(s)
Signal Transduction/physiology , Th1 Cells/cytology , Th2 Cells/cytology , Animals , Cell Differentiation , Cytokines/physiology , Humans , MicroRNAs/physiology , Receptors, CCR4/physiology , Receptors, CCR5/physiology , Receptors, CXCR3/physiology , Th1 Cells/physiology , Th2 Cells/physiology , Transcription Factors/physiology
14.
Adv Exp Med Biol ; 841: 45-65, 2014.
Article in English | MEDLINE | ID: mdl-25261204

ABSTRACT

CD4+ T helper cells regulate appropriate cellular and humoral immune responses to a wide range of pathogens and get involved in many diseases progress. The balance of the earliest determined CD4+ T helper cell subsets, Th1 and Th2, play an important role in allergy and autoimmune diseases. During the research, Animal models in immunology research are necessary and always the powerful tools for the basic scientific research. With the new sequence technologies, the finding of key gene mutation in Th1/Th2 cells has been proved to be related to human diseases. Here, we review four animal models about four key genes in Th1/Th2 cells to introduce the balance between Th1/Th2 cells. Furthermore, the related genetic mutations in human diseases and the new therapies are reviewed in this chapter, which show the importance of Th1/Th2 cells in human diseases further.


Subject(s)
Immune System/physiology , Th1 Cells/physiology , Th2 Cells/physiology , Animals , GATA3 Transcription Factor/genetics , Hepatocyte Growth Factor/genetics , Humans , Models, Animal , Mutation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-maf/genetics , STAT6 Transcription Factor/genetics , T-Box Domain Proteins/genetics
15.
J Hematol Oncol ; 17(1): 66, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135098

ABSTRACT

Long non-coding RNAs (lncRNAs), once considered transcriptional noise, have emerged as critical regulators of gene expression and key players in cancer biology. Recent breakthroughs have revealed that certain lncRNAs can encode small open reading frame (sORF)-derived peptides, which are now understood to contribute to the pathogenesis of various cancers. This review synthesizes current knowledge on the detection, functional roles, and clinical implications of lncRNA-encoded peptides in cancer. We discuss technological advancements in the detection and validation of sORFs, including ribosome profiling and mass spectrometry, which have facilitated the discovery of these peptides. The functional roles of lncRNA-encoded peptides in cancer processes such as gene transcription, translation regulation, signal transduction, and metabolic reprogramming are explored in various types of cancer. The clinical potential of these peptides is highlighted, with a focus on their utility as diagnostic biomarkers, prognostic indicators, and therapeutic targets. The challenges and future directions in translating these findings into clinical practice are also discussed, including the need for large-scale validation, development of sensitive detection methods, and optimization of peptide stability and delivery.


Subject(s)
Neoplasms , Peptides , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Neoplasms/genetics , Biomarkers, Tumor/genetics , Open Reading Frames , Animals , Gene Expression Regulation, Neoplastic
16.
Front Neurol ; 15: 1383771, 2024.
Article in English | MEDLINE | ID: mdl-38988596

ABSTRACT

Objective: This study aimed to examine the relationship between lipoprotein (a) (Lp[a]) and other blood lipid indexes and carotid artery atherosclerosis in patients with acute ischemic stroke (AIS). Methods: A total of 2,018 patients were selected from the hospital "acute stroke intervention and secondary prevention registration database" by identifying blood fat indexes (cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and Lp[a]). Based on the results of carotid artery ultrasound examinations, the patients were divided into a "no plaque" group, comprising 400 patients, a "plaque and no stenosis" group, comprising 1,122 patients and a "carotid stenosis" group, comprising 496 patients. The relationship between Lp(a) and blood lipid indexes and carotid artery atherosclerosis was then investigated using multi-factor logistics regression analysis. Results: There were 400 patients (19.8%) with no carotid plaque, 1,122 patients (55.6%) with plaque and no carotid stenosis and 496 patients (24.6%) with carotid stenosis. As the degree of carotid artery atherosclerosis increased, the Lp(a) level gradually increased; Lp(a) and cholesterol were identified as independent risk factors for carotid atherosclerosis. Conclusion: Lipoprotein (a) and cholesterol are independent risk factors for patients with AIS with carotid atherosclerosis, and their levels increase with the degree of carotid artery atherosclerosis; therefore, attention should focus on levels of cholesterol and Lp(a) in acute stroke patients to control atherosclerosis effectively.

17.
J Adv Res ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614215

ABSTRACT

INTRODUCTION: Senescence refers to a state of permanent cell growth arrest and is regarded as a tumor suppressive mechanism, whereas accumulative evidence demonstrate that senescent cells play an adverse role during cancer progression. The scarcity of specific and reliable markers reflecting senescence level in cancer impede our understanding of this biological basis. OBJECTIVES: Senescence-related genes (SRGs) were collected for integrative analysis to reveal the role of senescence in hepatocellular carcinoma (HCC). METHODS: Consensus clustering was used to subtype HCC based on SRGs. Several computational methods, including single sample gene set enrichment analysis (ssGSEA), fuzzy c-means algorithm, were performed. Data of drug sensitivities were utilized to screen potential therapeutic agents for different senescence patients. Additionally, we developed a method called signature-related gene analysis (SRGA) for identification of markers relevant to phenotype of interest. Experimental strategies consisting quantitative real-time PCR (qRT-PCR), ß-galactosidase assay, western blot, and tumor-T cell co-culture system were used to validate the findings in vitro. RESULTS: We identified three robust prognostic clusters of HCC patients with distinct survival outcome, mutational landscape, and immune features. We further extracted signature genes of senescence clusters to construct the senescence scoring system and profile senescence level in HCC at bulk and single-cell resolution. Senescence-induced stemness reprogramming was confirmed both in silico and in vitro. HCC patients with high senescence were immune suppressed and sensitive to Tozasertib and other drugs. We suggested that MAFG, PLIN3, and 4 other genes were pertinent to HCC senescence, and MAFG potentially mediated immune suppression, senescence, and stemness. CONCLUSION: Our findings provide insights into the role of SRGs in patients stratification and precision medicine.

18.
Oncogene ; 43(17): 1274-1287, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443680

ABSTRACT

Cumulative studies have established the significance of transfer RNA-derived small RNA (tsRNA) in tumorigenesis and progression. Nevertheless, its function and mechanism in pancreatic cancer metastasis remain largely unclear. Here, we screened and identified tiRNA-Val-CAC-2 as highly expressed in pancreatic cancer metastasis samples by tsRNA sequencing. We also observed elevated levels of tiRNA-Val-CAC-2 in the serum of pancreatic cancer patients who developed metastasis, and patients with high levels of tiRNA-Val-CAC-2 exhibited a worse prognosis. Additionally, knockdown of tiRNA-Val-CAC-2 inhibited the metastasis of pancreatic cancer in vivo and in vitro, while overexpression of tiRNA-Val-CAC-2 promoted the metastasis of pancreatic cancer. Mechanically, we discovered that tiRNA-Val-CAC-2 interacts with FUBP1, leading to enhanced stability of FUBP1 protein and increased FUBP1 enrichment in the c-MYC promoter region, thereby boosting the transcription of c-MYC. Of note, rescue experiments confirmed that tiRNA-Val-CAC-2 could influence pancreatic cancer metastasis via FUBP1-mediated c-MYC transcription. These findings highlight a potential novel mechanism underlying pancreatic cancer metastasis, and suggest that both tiRNA-Val-CAC-2 and FUBP1 could serve as promising prognostic biomarkers and potential therapeutic targets for pancreatic cancer.

19.
Redox Biol ; 69: 103029, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184998

ABSTRACT

Hepatocyte ferroptosis promotes the pathogenesis and progression of liver fibrosis. Salvianolic acid B (Sal B) exerts antifibrotic effects. However, the pharmacological mechanism and target has not yet been fully elucidated. In this study, liver fibrosis was induced by CCl4 in wild-type mice and hepatocyte-specific extracellular matrix protein 1 (Ecm1)-deficient mice, which were separately treated with Sal B, ferrostatin-1, sorafenib or cilengitide. Erastin- or CCl4-induced hepatocyte ferroptosis models with or without Ecm1 gene knockdown were evaluated in vitro. Subsequently, the interaction between Ecm1 and xCT and the binding kinetics of Sal B and Ecm1 were determined. We found that Sal B significantly attenuated liver fibrosis in CCl4-induced mice. Ecm1 deletion in hepatocytes abolished the antifibrotic effect of Sal B. Mechanistically, Sal B protected against hepatocyte ferroptosis by upregulating Ecm1. Further research revealed that Ecm1 as a direct target for treating liver fibrosis with Sal B. Interestingly, Ecm1 interacted with xCT to regulate hepatocyte ferroptosis. Hepatocyte ferroptosis in vitro was significantly attenuated by Sal B treatment, which was abrogated after knockdown of Ecm1 in LO2 cells. Therefore, Sal B alleviates liver fibrosis in mice by targeting up-regulation of Ecm1 and inhibiting hepatocyte ferroptosis. The interaction between Ecm1 and xCT regulates hepatocyte ferroptosis.


Subject(s)
Benzofurans , Depsides , Ferroptosis , Animals , Mice , Signal Transduction , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Hepatocytes/metabolism
20.
J Innate Immun ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134014

ABSTRACT

INTRODUCTION: MDM2 is known as the primary negative regulator of p53, MDM2 promotes lung cancer fibrosis and lung injury through p53-dependent and p53-independent pathways. However, the mechanism by which MDM2 influences the pathogenesis of asthma is unknown. In this study, we investigated the function of MDM2 in lung epithelial cells in type 2 lung inflammation. METHODS: We used type II alveolar epithelial cell-specific heterozygous knockout of Mdm2 mice to validate its function. Then papain-induced asthma model was established, and changes in inflammation were observed by measuring immunohistochemistry and flow cytometry analysis. RESULTS: In this study, we knockdown the mouse Mdm2 gene in type 2 alveolar epithelial cells. We demonstrated that heterozygous Mdm2 gene-deleted mice were highly susceptible to protease allergen papain-induced pulmonary inflammation characterized by increased ILC2 numbers, IL-5 and IL-13 cytokine levels, and lung pathology. A mechanistic study showed that following the decreased expression of Mdm2 in lung epithelial cells and A549 cell line, p53 was overactivated, and the expression of its downstream genes p21, Puma, and Noxa was elevated, which resulted in apoptosis. After Mdm2 knockdown, the mRNA expression of inflammation-related gene IL-25, HMGB1 and TNF-α were increased, which further amplified the downstream ILC2 response and lung inflammation. CONCLUSION: These results indicate that Mdm2 maintains the homeostasis of lung epithelial cells by targeting P53, and regulate the function of lung epithelial cells under type 2 lung inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL