Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Small ; 20(25): e2309542, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38221683

ABSTRACT

Smart luminescent materials that have the ability to reversibly adapt to external environmental stimuli and possess a wide range of responses are continually emerging, which place higher demands on the means of regulation and response sites. Here, europium ions (Eu3+)-directed supramolecular metallogels are constructed by orthogonal self-assembly of Eu3+ based coordination interactions and hydrogen bonding. A new organic ligand (L) is synthesized, consisting of crown ethers and two flexible amide bonds-linked 1,10-phenanthroline moieties to coordinate with Eu3+. Synergistic intermolecular hydrogen bonding in L and Eu3+-L coordination bonding enable Eu3+ and L to self-assemble into shape-persistent 3D coordination metallogels in MeOH solution. The key to success is the utilization of crown ethers, playing dual roles of acting both as building blocks to build L with C2-symmetrical structure, and as the ideal monomer for increasing the energy transfer from L to Eu3+'s excited state, thus maintaining the excellent luminescence of metallogels. Interestingly, such assemblies show K+, pH, F-, and mechano-induced reversible gel-sol transitions and tunable luminescence properties. Above findings are useful in the studies of molecular switches, dynamic assemblies, and smart luminescent materials.

2.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36239391

ABSTRACT

Discovering the biological basis of aging is one of the greatest remaining challenges for biomedical field. Work on the biology of aging has discovered a range of interventions and pathways that control aging rate. Thus, we developed AgingBank (http://bio-bigdata.hrbmu.edu.cn/AgingBank) which was a manually curated comprehensive database and high-throughput analysis platform that provided experimentally supported multi-omics data relevant to aging in multiple species. AgingBank contained 3771 experimentally verified aging-related multi-omics entries from studies across more than 50 model organisms, including human, mice, worms, flies and yeast. The records included genome (single nucleotide polymorphism, copy number variation and somatic mutation), transcriptome [mRNA, long non-coding RNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA)], epigenome (DNA methylation and histone modification), other modification and regulation elements (transcription factor, enhancer, promoter, gene silence, alternative splicing and RNA editing). In addition, AgingBank was also an online computational analysis platform containing five useful tools (Aging Landscape, Differential Expression Analyzer, Data Heat Mapper, Co-Expression Network and Functional Annotation Analyzer), nearly 112 high-throughput experiments of genes, miRNAs, lncRNAs, circRNAs and methylation sites related with aging. Cancer & Aging module was developed to explore the relationships between aging and cancer. Submit & Analysis module allows users upload and analyze their experiments data. AginBank is a valuable resource for elucidating aging-related biomarkers and relationships with other diseases.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , Mice , Animals , DNA Copy Number Variations , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Circular , MicroRNAs/genetics , Neoplasms/genetics , Knowledge Bases , Aging/genetics
3.
Opt Express ; 32(5): 7969-7986, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439466

ABSTRACT

Performing correction first is the most common methods to address feature matching issues for fisheye images, but corrections often result in significant loss of scene details or stretching of images, leaving peripheral regions without matches. In this paper, we propose a novel approach, named flattened-affine-SIFT, to find widely distributed feature matches between stereo fisheye images. Firstly, we establish a new imaging model that integrates a scalable model and a hemisphere model. Utilizing the extensibility of the imaging model, we design a flattened array model to reduce the distortion of fisheye images. Additionally, the affine transformation is performed on the flattened simulation images, which are computed using the differential expansion and the optimal rigidity transformation. Then feature matches are extracted and matched from the simulated images. Experiments on indoor and outdoor fisheye images show that the proposed algorithm can find a large number of reliable feature matches. Moreover, these matches tend to be dispersed over the entire effective image, including peripheral regions with dramatic distortion.

4.
Insect Mol Biol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949741

ABSTRACT

Transcriptomic data have been used to study sex chromosome dosage compensation (SCDC) in approximately 10 Lepidoptera ZW species, yielding a consensus compensation pattern of Z ≈ ZZ < AA . $$ \approx \mathrm{ZZ}<\mathrm{AA}. $$ It remains unclear whether this compensation pattern holds when examining more Lepidoptera ZW species and/or using proteomic data to analyse SCDC. Here we combined transcriptomic and proteomic data as well as transcriptional level of six individual Z genes to reveal the SCDC pattern in Helicoverpa armigera, a polyphagous lepidopteran pest of economic importance. Transcriptomic analysis showed that the Z chromosome expression of H. armigera was balanced between male and female but substantially reduced relative to autosome expression, exhibiting an SCDC pattern of Z ≈ ZZ < AA $$ \approx \mathrm{ZZ}<\mathrm{AA} $$ . When using H. amigera midgut proteomic data, the SCDC pattern of this species changed from Z ≈ ZZ < AA $$ \approx \mathrm{ZZ}<\mathrm{AA} $$ at transcriptomic level to Z = ZZ = AA at the proteomic level. RT-qPCR analysis of transcript abundance of six Z genes found that compensation for each Z gene could vary from no compensation to overcompensation, depending on the individual genes and tissues tested. These results demonstrate for the first time the existence of a translational compensation mechanism, which is operating in addition to a translational mechanism, such as has been reported in other lepidopteran species. And the transcriptional compensation mechanism functions to accomplish Z chromosome dosage balance between the sexes (M = F on the Z chromosome), whereas the translation compensation mechanism operates to achieve dosage compensation between Z chromosome and autosome (Z = AA).

5.
Cell Commun Signal ; 22(1): 337, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898461

ABSTRACT

Killer cell lectin-like receptor G1 (KLRG1) is an immune checkpoint receptor expressed predominantly in NK and T-cell subsets that downregulates the activation and proliferation of immune cells and participates in cell-mediated immune responses. Accumulating evidence has demonstrated the importance of KLRG1 as a noteworthy disease marker and therapeutic target that can influence disease onset, progression, and prognosis. Blocking KLRG1 has been shown to effectively mitigate the effects of downregulation in various mouse tumor models, including solid tumors and hematologic malignancies. However, KLRG1 inhibitors have not yet been approved for human use, and the understanding of KLRG1 expression and its mechanism of action in various diseases remains incomplete. In this review, we explore alterations in the distribution, structure, and signaling pathways of KLRG1 in immune cells and summarize its expression patterns and roles in the development and progression of autoimmune diseases, infectious diseases, and cancers. Additionally, we discuss the potential applications of KLRG1 as a tool for tumor immunotherapy.


Subject(s)
Lectins, C-Type , Neoplasms , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/antagonists & inhibitors , Animals , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Biomarkers/metabolism , Signal Transduction , Autoimmune Diseases/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/drug therapy , Immunotherapy
6.
J Chem Inf Model ; 64(3): 1066-1080, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38238993

ABSTRACT

Ovarian cancer (OC) is a highly heterogeneous disease, with patients at different tumor staging having different survival times. Metabolic reprogramming is one of the key hallmarks of cancer; however, the significance of metabolism-related genes in the prognosis and therapy outcomes of OC is unclear. In this study, we used weighted gene coexpression network analysis and differential expression analysis to screen for metabolism-related genes associated with tumor staging. We constructed the metabolism-related gene prognostic index (MRGPI), which demonstrated a stable prognostic value across multiple clinical trial end points and multiple validation cohorts. The MRGPI population had its distinct molecular features, mutational characteristics, and immune phenotypes. In addition, we investigated the response to immunotherapy in MRGPI subgroups and found that patients with low MRGPI were prone to benefit from anti-PD-1 checkpoint blockade therapy and exhibited a delayed treatment effect. Meanwhile, we identified four candidate therapeutic drugs (ABT-737, crizotinib, panobinostat, and regorafenib) for patients with high MRGPI, and we evaluated the pharmacokinetics and safety of the candidate drugs. In summary, the MRGPI was a robust clinical feature that could predict patient prognosis, immunotherapy response, and candidate drugs, facilitating clinical decision making and therapeutic strategy of OC.


Subject(s)
Immunotherapy , Ovarian Neoplasms , Humans , Female , Prognosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Metabolic Reprogramming , Mutation
7.
Phys Chem Chem Phys ; 26(26): 18149-18161, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38896464

ABSTRACT

Alzheimer's disease (AD) is a disease that affects the cognitive abilities of older adults, and it is one of the biggest global medical challenges of the 21st century. Acetylcholinesterase (AChE) can increase acetylcholine concentrations and improve cognitive function in patients, and is a potential target to develop small molecule inhibitors for the treatment of Alzheimer's disease (AD). In this study, 29 vilazodone-donepezil chimeric derivatives are systematically studied using 3D-QSAR modeling, and a robust and reliable Topomer CoMFA model was obtained with: q2 = 0.720, r2 = 0.991, F = 287.234, N = 6, and SEE = 0.098. Based on the established model and combined with the ZINC20 database, 33 new compounds with ideal inhibitory activity are successfully designed. Molecular docking and ADMET property prediction also show that these newly designed compounds have a good binding ability to the target protein and can meet the medicinal conditions. Subsequently, four new compounds with good comprehensive ability are selected for molecular dynamics simulation, and the simulation results confirm that the newly designed compounds have a certain degree of reliability and stability. This study provides guidance for vilazodone-donepezil chimeric derivatives as a potential AChE inhibitor and has certain theoretical value.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Donepezil , Drug Design , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Vilazodone Hydrochloride , Donepezil/chemistry , Donepezil/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Humans , Vilazodone Hydrochloride/chemistry , Vilazodone Hydrochloride/pharmacology
8.
Nucleic Acids Res ; 50(D1): D183-D189, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850125

ABSTRACT

LncACTdb 3.0 is a comprehensive database of experimentally supported interactions among competing endogenous RNA (ceRNA) and the corresponding personalized networks contributing to precision medicine. LncACTdb 3.0 is freely available at http://bio-bigdata.hrbmu.edu.cn/LncACTdb or http://www.bio-bigdata.net/LncACTdb. We have updated the LncACTdb 3.0 database with several new features, including (i) 5669 experimentally validated ceRNA interactions across 25 species and 537 diseases/phenotypes through manual curation of published literature, (ii) personalized ceRNA interactions and networks for 16 228 patients from 62 datasets in TCGA and GEO, (iii) sub-cellular and extracellular vesicle locations of ceRNA manually curated from literature and data sources, (iv) more than 10 000 experimentally supported long noncoding RNA (lncRNA) biomarkers associated with tumor diagnosis and therapy, and (v) lncRNA/mRNA/miRNA expression profiles with clinical and pathological information of thousands of cancer patients. A panel of improved tools has been developed to explore the effects of ceRNA on individuals with specific pathological backgrounds. For example, a network tool provides a comprehensive view of lncRNA-related, patient-specific, and custom-designed ceRNA networks. LncACTdb 3.0 will provide novel insights for further studies of complex diseases at the individual level and will facilitate the development of precision medicine to treat such diseases.


Subject(s)
Databases, Genetic , Precision Medicine , RNA/genetics , Software , Computational Biology , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , RNA/classification
9.
Chem Biodivers ; : e202400782, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923279

ABSTRACT

Mesenchymal-epithelial transition factor (c-Met) is a tyrosine kinase receptor. Under certain disease conditions, the cellular transformation process may be over-activated, resulting in carcinogenesis. Therefore, molecularly targeted therapy targeting the receptor tyrosine kinase c-Met is achieved by inhibiting c-Met activity and thus effectively suppressing cancer propagation. In this paper, 41 compounds were selected from the reported literature as a dataset to build stable Topomer CoMFA and HQSAR models. The feasibility of the constructed models was evaluated by internal and external validation techniques. Based on the Topomer CoMFA model basis the fragments with higher contribution values were screened and the combination yielded 19 compounds with higher than template molecules. Through molecular docking, the ligand complexes formed hydrogen and hydrophobic bonds with strong stable structures. The ligand-protein complexes with better scoring results were selected for MD simulations, and Y14 exhibited a stable and favourable binding pocket. In addition, ADMET results showed that the ligand-complexes have potential medicinal effects on c-Met inhibition. This study provides a reference for molecularly targeted therapy targeting receptor tyrosine-kinetic c-Met.

10.
Genes Immun ; 24(2): 81-91, 2023 04.
Article in English | MEDLINE | ID: mdl-36807625

ABSTRACT

Aging is a complex process that significantly impacts the immune system. The aging-related decline of the immune system, termed immunosenescence, can lead to disease development, including cancer. The perturbation of immunosenescence genes may characterize the associations between cancer and aging. However, the systematical characterization of immunosenescence genes in pan-cancer remains largely unexplored. In this study, we comprehensively investigated the expression of immunosenescence genes and their roles in 26 types of cancer. We developed an integrated computational pipeline to identify and characterize immunosenescence genes in cancer based on the expression profiles of immune genes and clinical information of patients. We identified 2218 immunosenescence genes that were significantly dysregulated in a wide variety of cancers. These immunosenescence genes were divided into six categories based on their relationships with aging. Besides, we assessed the importance of immunosenescence genes in clinical prognosis and identified 1327 genes serving as prognostic markers in cancers. BTN3A1, BTN3A2, CTSD, CYTIP, HIF1AN, and RASGRP1 were associated with ICB immunotherapy response and served as prognostic factors after ICB immunotherapy in melanoma. Collectively, our results furthered the understanding of the relationship between immunosenescence and cancer and provided insights into immunotherapy for patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Immune System , Immunosenescence , Neoplasms , Gene Expression Profiling , Aging , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Humans , Immunotherapy , Treatment Outcome
11.
Cancer Immunol Immunother ; 72(11): 3693-3705, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37608128

ABSTRACT

Immunosenescence has been demonstrated to play an important role in tumor progression. However, there is lacking comprehensive analyses of immunosenescence-related pathways. Meanwhile, the sex disparities of immunosenescence in cancer are still poorly understood. In this study, we analyzed the multi-omics data of 12,836 tumor samples, including genomics, transcriptomics, epigenomics, proteomics, and metabolomics. We systematically identified immunosenescence pathways that were disordered across cancer types. The mutations and copy number variations of immunosenescence pathways were found to be more active in pan-cancer. We reconstructed the immunosenescence core pathways (ISC-pathways) to improve the ability of prognostic stratification in 33 cancer types. We also found the head and neck squamous carcinoma (HNSC) contained abundant sex-specific immunosenescence features and showed sex differences in survival. We found that OSI-027 was a potential sex-specific drug in HNSC tumors, which tended to be more effective in male HNSC by targeting the MTOR gene in the PI3K-Akt signaling pathway. In conclusion, our study provided a systematic understanding of immunosenescence pathways and revealed the global characteristics of immunosenescence in pan-cancer. We highlighted MTOR gene could be a powerful immunosenescence biomarker of HNSC that helps to develop sex-specific immunosenescence drugs.


Subject(s)
Head and Neck Neoplasms , Immunosenescence , Female , Male , Humans , DNA Copy Number Variations , Phosphatidylinositol 3-Kinases , Squamous Cell Carcinoma of Head and Neck , TOR Serine-Threonine Kinases/genetics
12.
Glob Chang Biol ; 29(23): 6794-6811, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37731366

ABSTRACT

Understanding the controlling mechanisms of soil properties on ecosystem productivity is essential for sustaining productivity and increasing resilience under a changing climate. Here we investigate the control of topsoil depth (e.g., A horizons) on long-term ecosystem productivity. We used nationwide observations (n = 2401) of topsoil depth and multiple scaled datasets of gross primary productivity (GPP) for five ecosystems (cropland, forest, grassland, pasture, shrubland) over 36 years (1986-2021) across the conterminous USA. The relationship between topsoil depth and GPP is primarily associated with water availability, which is particularly significant in arid regions under grassland, shrubland, and cropland (r = .37, .32, .15, respectively, p < .0001). For every 10 cm increase in topsoil depth, the GPP increased by 114 to 128 g C m-2 year-1 in arid regions (r = .33 and .45, p < .0001). Paired comparison of relatively shallow and deep topsoils while holding other variables (climate, vegetation, parent material, soil type) constant showed that the positive control of topsoil depth on GPP occurred primarily in cropland (0.73, confidence interval of 0.57-0.84) and shrubland (0.75, confidence interval of 0.40-0.94). The GPP difference between deep and shallow topsoils was small and not statistically significant. Despite the positive control of topsoil depth on productivity in arid regions, its contribution (coefficients: .09-.33) was similar to that of heat (coefficients: .06-.39) but less than that of water (coefficients: .07-.87). The resilience of ecosystem productivity to climate extremes varied in different ecosystems and climatic regions. Deeper topsoils increased stability and decreased the variability of GPP under climate extremes in most ecosystems, especially in shrubland and grassland. The conservation of topsoil in arid regions and improvements of soil depth representation and moisture-retention mechanisms are critical for carbon-sequestration ecosystem services under a changing climate. These findings and relationships should also be included in Earth system models.


Subject(s)
Ecosystem , Grassland , Desert Climate , Soil , Water
13.
Nucleic Acids Res ; 49(D1): D1244-D1250, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33219661

ABSTRACT

We describe an updated comprehensive database, LincSNP 3.0 (http://bioinfo.hrbmu.edu.cn/LincSNP), which aims to document and annotate disease or phenotype-associated variants in human long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) or their regulatory elements. LincSNP 3.0 has updated with several novel features, including (i) more types of variants including single nucleotide polymorphisms (SNPs), linkage disequilibrium SNPs (LD SNPs), somatic mutations and RNA editing sites have been expanded; (ii) more regulatory elements including transcription factor binding sites (TFBSs), enhancers, DNase I hypersensitive sites (DHSs), topologically associated domains (TADs), footprintss, methylations and open chromatin regions have been added; (iii) the associations among circRNAs, regulatory elements and variants have been identified; (iv) more experimentally supported variant-lncRNA/circRNA-disease/phenotype associations have been manually collected; (v) the sources of lncRNAs, circRNAs, SNPs, somatic mutations and RNA editing sites have been updated. Moreover, four flexible online tools including Genome Browser, Variant Mapper, Circos Plotter and Functional Annotation have been developed to retrieve, visualize and analyze the data. Collectively, LincSNP 3.0 provides associations among functional variants, regulatory elements, lncRNAs and circRNAs in diseases. It will serve as an important and continually updated resource for investigating functions and mechanisms of lncRNAs and circRNAs in diseases.


Subject(s)
Databases, Nucleic Acid , Disease/genetics , Genome, Human , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Regulatory Sequences, Nucleic Acid , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Disease/classification , Humans , Internet , Linkage Disequilibrium , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Protein Binding , RNA, Circular/classification , RNA, Circular/metabolism , RNA, Long Noncoding/classification , RNA, Long Noncoding/metabolism , Software , Transcription Factors/genetics , Transcription Factors/metabolism
14.
J Integr Plant Biol ; 65(10): 2368-2379, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37655952

ABSTRACT

Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl-acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.


Subject(s)
Glycine max , Plant Proteins , Glycine max/genetics , Glycine max/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Seeds/genetics , Seeds/metabolism , Plant Oils/metabolism
15.
Mov Disord ; 37(3): 545-552, 2022 03.
Article in English | MEDLINE | ID: mdl-34820915

ABSTRACT

BACKGROUND: Paroxysmal kinesigenic dyskinesia (PKD) is the most common type of paroxysmal dyskinesias. Only one-third of PKD patients are attributed to proline-rich transmembrane protein 2 (PRRT2) mutations. OBJECTIVE: We aimed to explore the potential causative gene for PKD. METHODS: A cohort of 196 PRRT2-negative PKD probands were enrolled for whole-exome sequencing (WES). Gene Ranking, Identification and Prediction Tool, a method of case-control analysis, was applied to identify the candidate genes. Another 325 PRRT2-negative PKD probands were subsequently screened with Sanger sequencing. RESULTS: Transmembrane Protein 151 (TMEM151A) variants were mainly clustered in PKD patients compared with the control groups. 24 heterozygous variants were detected in 25 of 521 probands (frequency = 4.80%), including 18 missense and 6 nonsense mutations. In 29 patients with TMEM151A variants, the ratio of male to female was 2.63:1 and the mean age of onset was 12.93 ± 3.15 years. Compared with PRRT2 mutation carriers, TMEM151A-related PKD were more common in sporadic PKD patients with pure phenotype. There was no significant difference in types of attack and treatment outcome between TMEM151A-positive and PRRT2-positive groups. CONCLUSIONS: We consolidated mutations in TMEM151A causing PKD with the aid of case-control analysis of a large-scale WES data, which broadens the genotypic spectrum of PKD. TMEM151A-related PKD were more common in sporadic cases and tended to present as pure phenotype with a late onset. Extensive functional studies are needed to enhance our understanding of the pathogenesis of TMEM151A-related PKD. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Chorea , Dystonia , Membrane Proteins , Adolescent , Child , Female , Humans , Male , Chorea/genetics , Dystonia/genetics , Membrane Proteins/metabolism , Mutation/genetics , Phenotype
16.
Environ Res ; 214(Pt 4): 114137, 2022 11.
Article in English | MEDLINE | ID: mdl-36030913

ABSTRACT

Dye recovery is of great significance for a circular economy and sustainable development. However, green recovery strategies without secondary pollution remain a significant challenge. To resolve this issue, a light-responsive smart material (citric acid-modified BiOCOOH (m-BOCH)) was synthesized and applied for dye recovery through adsorption in the dark, and desorption under visible light. With the modification of citric acid, the adsorption level of methylene blue (MB) on m-BOCH (43.4%) was more than six times that of pure BiOCOOH (7.1%). The desorption rate was ∼90% in 120 min under 420 nm light irradiation (there was no desorption for pure BOCH). Further, the adsorption rate was improved to 83.9% and the desorption rate remained stable at an optimal pH of 10.09. Characterization results indicated that carboxyl groups were modified onto the surface of BiOCOOH and served as adsorption sites for MB. Under visible light exposure, the connections between the carboxyl groups and BiOCOOH were damaged, which led to the desorption of MB from the surface of the m-BOCH. The recovered MB exhibited a good staining effect on hepatic stellate cells (HSC) as a fresh dye. The regeneration of m-BOCH was achieved through a moderate hydrothermal process, and the adsorption and desorption capacities were restored to 80.8% and 85.7%, respectively. This research provides a novel environmentally compatible strategy for dye recovery without secondary pollution. This is a very promising treatment technique for dye effluents, which highlights the application of smart materials resource recycling for environmental remediation.


Subject(s)
Citric Acid , Water Pollutants, Chemical , Adsorption , Citric Acid/chemistry , Kinetics , Methylene Blue/chemistry , Water Pollutants, Chemical/analysis
17.
Environ Res ; 214(Pt 3): 114076, 2022 11.
Article in English | MEDLINE | ID: mdl-35970376

ABSTRACT

Low C/N municipal wastewater is difficult to be treated effectively via traditional biological methods, leading to concentrations of pollutants in effluent far exceeding increasingly strict standards. In this work, we propose a novel microalgae-bacteria tandem-type process to simultaneously remove ammonia nitrogen (NH4+-N) and phosphorus (P) from municipal wastewater. A 4.5 L microalgae-bacteria tandem-type reactor was constructed and operated stably for 40 days. The removal efficiencies of NH4+-N and P reached 97.5% and 92.9%, respectively, effluent concentrations were 0.53 and 0.17 mg/L on average, which met the Environmental quality standards for surface water in China (GB 3838-2002). Remarkably, microalgae ponds accounted for 69.3% and 76.3% of the overall NH4+-N and P removal via microalgae assimilation. Furthermore, 16 S rRNA gene amplicon sequencing revealed the abundance of bacteria changed, suggesting that the presence of microalgae leads to some species extinction and low-abundance bacteria increase. This work demonstrated that the microalgae-bacteria tandem-type processes can be efficient and widely applied in the advanced treatment of municipal wastewater.


Subject(s)
Microalgae , Phosphorus , Ammonia , Bacteria/genetics , Biomass , Nitrogen/analysis , Ponds , Wastewater/microbiology
18.
J Opt Soc Am A Opt Image Sci Vis ; 38(4): 476-487, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33798176

ABSTRACT

In this paper, we concentrate on dense estimation of disparities between fish-eye images without corrections. Because of the distortions, fish-eye images cannot be processed directly utilizing the classical adaptive support weight (ASW) method for perspective images. To address this problem, we propose a modified hemispherical ASW method in a hemispherical framework. First, 3D epipolar curves are calculated directly on a hemispherical model to deal with the problem that 2D epipolar curves cannot cover the whole image disc. Then, a modified ASW method with hemispherical support window and hemispherical geodesic distance is presented. Moreover, a three-dimensional epipolar distance transform (3DEDT) is proposed and fused into the matching cost to cope with the textureless region problem. The benefit of this approach is demonstrated by realizing the dense stereo matching for fish-eye images using a public fish-eye data set, for which both objectively evaluated as well as visually convincing results are provided.

19.
J Opt Soc Am A Opt Image Sci Vis ; 38(8): 1170-1177, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34613311

ABSTRACT

This paper presents a new algorithm that robustly performs stereo matching for textureless regions in stereo images. To this end, we design an adaptive matching cost which employs a special term. This term can assign distinguishable values to pixels adaptively according to the texture information. Specifically, first, we improve the epipolar distance transform by utilizing a linear expansion function and obtain an adaptive epipolar distance transform (AEDT); second, we propose an adaptive matching cost utilizing the AEDT to deal with textureless region problems. Experiments on the Middlebury benchmark demonstrate that the proposed method can perform accurate stereo matching on textureless regions. Moreover, the experiments show that the proposed adaptive matching cost can be directly utilized to other methods to improve the disparity results in textureless regions.

20.
Antonie Van Leeuwenhoek ; 114(4): 355-364, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33548024

ABSTRACT

A Gram-staining-negative, non-motile, aerobic bacterium, designated 1-3T, was isolated from oil reservoir water collected from Liaohe oilfield, north-east of China. Growth was observed at 15-40 °C (optimum 37 °C) and pH 6-10 (optimum 7). The strain can grow under nitrogen-limiting condition. Phylogenetic analysis based on 16S rRNA gene sequences showed that the novel isolate was most closely related to Siccirubricoccus deserti SYSU D8009T (96.7%), followed by Paracraurococcus ruber NS89T (95.7%) and Belnapia rosea CPCC 100156T (94.9%). Genome sequencing revealed a genome size of 6.43 Mbp and a G+C content of 71.3 mol%. The average nucleotide identity values and digital DNA-DNA hybridization between 1-3T and the reference strains were all below the cut-off level (95-96% and 70%, respectively) for species delineation. The strain possessed the cytochrome P450 enzyme, which has the potential to degrade oil. The respiratory quinone was Q-10 and the major fatty acids were summed feature 8 (C18:1 ω7c/C18:1 ω6c, 38.8%), C16:0 (25.6%) and C19:0 cyclo ω8c (22.5%). The polar lipids of strain 1-3T comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and three unidentified aminolipids. Based on the genotypic and phenotypic characteristics, strain 1-3T represents a novel species of genus Siccirubricoccus, for which the name Siccirubricoccus phaeus sp. nov. is proposed. The type strain of Siccirubricoccus phaeus is 1-3T (= CGMCC 1.16799T = LMG 31398T).


Subject(s)
Oil and Gas Fields , Water , Acetobacteraceae , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL