Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.005
Filter
1.
Cell ; 177(5): 1293-1307.e16, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31031008

ABSTRACT

The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.


Subject(s)
Hypothalamus/metabolism , Mesencephalon/metabolism , Neurons/metabolism , Sleep Stages/physiology , Animals , Cholecystokinin/metabolism , Hypothalamus/cytology , Mesencephalon/cytology , Mice , Mice, Transgenic , Neurons/cytology , Optogenetics
2.
Cell ; 170(3): 483-491.e8, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28735752

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from an ATP-binding cassette transporter. CFTR channel gating is strictly coupled to phosphorylation and ATP hydrolysis. Previously, we reported essentially identical structures of zebrafish and human CFTR in the dephosphorylated, ATP-free form. Here, we present the structure of zebrafish CFTR in the phosphorylated, ATP-bound conformation, determined by cryoelectron microscopy to 3.4 Å resolution. Comparison of the two conformations shows major structural rearrangements leading to channel opening. The phosphorylated regulatory domain is disengaged from its inhibitory position; the nucleotide-binding domains (NBDs) form a "head-to-tail" dimer upon binding ATP; and the cytoplasmic pathway, found closed off in other ATP-binding cassette transporters, is cracked open, consistent with CFTR's unique channel function. Unexpectedly, the extracellular mouth of the ion pore remains closed, indicating that local movements of the transmembrane helices can control ion access to the pore even in the NBD-dimerized conformation.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Zebrafish Proteins/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Cryoelectron Microscopy , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Models, Molecular , Protein Domains , Sequence Alignment , Zebrafish Proteins/metabolism
3.
Cell ; 169(1): 85-95.e8, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340353

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Here, we present a 3.9 Å structure of dephosphorylated human CFTR without nucleotides, determined by electron cryomicroscopy (cryo-EM). Close resemblance of this human CFTR structure to zebrafish CFTR under identical conditions reinforces its relevance for understanding CFTR function. The human CFTR structure reveals a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. By analyzing the sigmoid time course of CFTR current activation, we propose that PKA phosphorylation of the R domain is enabled by its infrequent spontaneous disengagement, which also explains residual ATPase and gating activity of dephosphorylated CFTR. From comparison with MRP1, a feature distinguishing CFTR from all other ABC transporters is the helix-loop transition in transmembrane helix 8, which likely forms the structural basis for CFTR's channel function.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Animals , Cattle , Cryoelectron Microscopy , Humans , Hydrolysis , Models, Molecular , Protein Domains , Xenopus laevis , Zebrafish , Zebrafish Proteins/chemistry
4.
Mol Cell ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955180

ABSTRACT

During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.

5.
Immunity ; 55(12): 2285-2299.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36272416

ABSTRACT

Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.


Subject(s)
Cardiovascular Diseases , Myocardial Infarction , Thrombosis , Humans , Megakaryocytes , Thrombopoiesis , Neutrophils , Blood Platelets/physiology
6.
Cell ; 167(6): 1586-1597.e9, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912062

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Å resolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Zebrafish Proteins/chemistry , Zebrafish/metabolism , Animals , Cryoelectron Microscopy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Models, Molecular , Mutation , Protein Folding , Sequence Homology, Amino Acid , Zebrafish Proteins/metabolism
7.
Mol Cell ; 83(5): 715-730.e6, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868189

ABSTRACT

Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.


Subject(s)
Genome-Wide Association Study , Regulatory Sequences, Nucleic Acid , Animals , Mice , Introns , Cell Differentiation , Gene Silencing , Mi-2 Nucleosome Remodeling and Deacetylase Complex
8.
Nature ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987596

ABSTRACT

Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.

9.
Mol Cell ; 82(8): 1528-1542.e10, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35245436

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a global health concern with no approved drugs. High-protein dietary intervention is currently the most effective treatment. However, its underlying mechanism is unknown. Here, using Drosophila oenocytes, the specialized hepatocyte-like cells, we find that dietary essential amino acids ameliorate hepatic steatosis by inducing polyubiquitination of Plin2, a lipid droplet-stabilizing protein. Leucine and isoleucine, two branched-chain essential amino acids, strongly bind to and activate the E3 ubiquitin ligase Ubr1, targeting Plin2 for degradation. We further show that the amino acid-induced Ubr1 activity is necessary to prevent steatosis in mouse livers and cultured human hepatocytes, providing molecular insight into the anti-NAFLD effects of dietary protein/amino acids. Importantly, split-intein-mediated trans-splicing expression of constitutively active UBR2, an Ubr1 family member, significantly ameliorates obesity-induced and high fat diet-induced hepatic steatosis in mice. Together, our results highlight activation of Ubr1 family proteins as a promising strategy in NAFLD treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Amino Acids, Essential/metabolism , Amino Acids, Essential/pharmacology , Amino Acids, Essential/therapeutic use , Animals , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Ubiquitination
10.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914936

ABSTRACT

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Subject(s)
Neurotransmitter Agents , Reserpine , Serotonin , Tetrabenazine , Vesicular Monoamine Transport Proteins , Humans , Adrenergic Uptake Inhibitors/chemistry , Adrenergic Uptake Inhibitors/pharmacology , Biological Transport/drug effects , Cryoelectron Microscopy , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacology , Reserpine/chemistry , Reserpine/pharmacology , Serotonin/metabolism , Synaptic Transmission , Tetrabenazine/chemistry , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure , Substrate Specificity/drug effects
11.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33301730

ABSTRACT

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Subject(s)
DNA/genetics , Erythroid Precursor Cells/metabolism , Fetal Hemoglobin/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Transcription Factors/genetics , Animals , Binding Sites , COS Cells , CRISPR-Cas Systems , Chlorocebus aethiops , DNA/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/transplantation , Fetal Blood/cytology , Fetal Blood/metabolism , Fetal Hemoglobin/metabolism , Fetus , Gene Editing , HEK293 Cells , Heterografts , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Models, Molecular , Mouse Embryonic Stem Cells/cytology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcriptional Activation
12.
Nature ; 598(7880): 293-297, 2021 10.
Article in English | MEDLINE | ID: mdl-34646003

ABSTRACT

Robustness against disorder and defects is a pivotal advantage of topological systems1, manifested by the absence of electronic backscattering in the quantum-Hall2 and spin-Hall effects3, and by unidirectional waveguiding in their classical analogues4,5. Two-dimensional (2D) topological insulators4-13, in particular, provide unprecedented opportunities in a variety of fields owing to their compact planar geometries, which are compatible with the fabrication technologies used in modern electronics and photonics. Among all 2D topological phases, Chern insulators14-25 are currently the most reliable designs owing to the genuine backscattering immunity of their non-reciprocal edge modes, brought via time-reversal symmetry breaking. Yet such resistance to fabrication tolerances is limited to fluctuations of the same order of magnitude as their bandgap, limiting their resilience to small perturbations only. Here we investigate the robustness problem in a system where edge transmission can survive disorder levels with strengths arbitrarily larger than the bandgap-an anomalous non-reciprocal topological network. We explore the general conditions needed to obtain such an unusual effect in systems made of unitary three-port non-reciprocal scatterers connected by phase links, and establish the superior robustness of anomalous edge transmission modes over Chern ones to phase-link disorder of arbitrarily large values. We confirm experimentally the exceptional resilience of the anomalous phase, and demonstrate its operation in various arbitrarily shaped disordered multi-port prototypes. Our results pave the way to efficient, arbitrary planar energy transport on 2D substrates for wave devices with full protection against large fabrication flaws or imperfections.

13.
Nature ; 591(7848): 61-65, 2021 03.
Article in English | MEDLINE | ID: mdl-33658695

ABSTRACT

Controlling matter-light interactions with cavities is of fundamental importance in modern science and technology1. This is exemplified in the strong-coupling regime, where matter-light hybrid modes form, with properties that are controllable by optical-wavelength photons2,3. By contrast, matter excitations on the nanometre scale are harder to access. In two-dimensional van der Waals heterostructures, a tunable moiré lattice potential for electronic excitations may form4, enabling the generation of correlated electron gases in the lattice potentials5-9. Excitons confined in moiré lattices have also been reported10,11, but no cooperative effects have been observed and interactions with light have remained perturbative12-15. Here, by integrating MoSe2-WS2 heterobilayers in a microcavity, we establish cooperative coupling between moiré-lattice excitons and microcavity photons up to the temperature of liquid nitrogen, thereby integrating versatile control of both matter and light into one platform. The density dependence of the moiré polaritons reveals strong nonlinearity due to exciton blockade, suppressed exciton energy shift and suppressed excitation-induced dephasing, all of which are consistent with the quantum confined nature of the moiré excitons. Such a moiré polariton system combines strong nonlinearity and microscopic-scale tuning of matter excitations using cavity engineering and long-range light coherence, providing a platform with which to study collective phenomena from tunable arrays of quantum emitters.

14.
Mol Cell ; 73(5): 1028-1043.e5, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30733118

ABSTRACT

Mutations in PTEN-induced kinase 1 (PINK1) can cause recessive early-onset Parkinson's disease (PD). Import arrest results in PINK1 kinase activation specifically on damaged mitochondria, triggering Parkin-mediated mitophagy. Here, we show that PINK1 import is less dependent on Tim23 than on mitochondrial membrane potential (ΔΨm). We identified a negatively charged amino acid cluster motif that is evolutionarily conserved just C-terminal to the PINK1 transmembrane. PINK1 that fails to accumulate at the outer mitochondrial membrane, either by mutagenesis of this negatively charged motif or by deletion of Tom7, is imported into depolarized mitochondria and cleaved by the OMA1 protease. Some PD patient mutations also are defective in import arrest and are rescued by the suppression of OMA1, providing a new potential druggable target for PD. These results suggest that ΔΨm loss-dependent PINK1 import arrest does not result solely from Tim23 inactivation but also through an actively regulated "tug of war" between Tom7 and OMA1.


Subject(s)
Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Mitochondria/enzymology , Mitochondrial Membranes/enzymology , Mitochondrial Proteins/metabolism , Parkinson Disease/enzymology , Protein Kinases/metabolism , Amino Acid Motifs , Antiparkinson Agents/pharmacology , Biological Transport , Drug Design , Enzyme Activation , HeLa Cells , Humans , Membrane Potential, Mitochondrial , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Mitochondria/drug effects , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/drug effects , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Protein Interaction Domains and Motifs , Protein Kinases/genetics , Proteolysis , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
Am J Hum Genet ; 110(7): 1162-1176, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37352861

ABSTRACT

Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Follow-Up Studies , Genetic Predisposition to Disease , Genetic Association Studies , Polymorphism, Single Nucleotide/genetics , Homeodomain Proteins/genetics
16.
Blood ; 143(15): 1539-1550, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38142422

ABSTRACT

ABSTRACT: JAK2 V617F (JAK2VF) clonal hematopoiesis (CH) has been associated with atherothrombotic cardiovascular disease (CVD). We assessed the impact of Jak2VF CH on arterial thrombosis and explored the underlying mechanisms. A meta-analysis of 3 large cohort studies confirmed the association of JAK2VF with CVD and with platelet counts and adjusted mean platelet volume (MPV). In mice, 20% or 1.5% Jak2VF CH accelerated arterial thrombosis and increased platelet activation. Megakaryocytes in Jak2VF CH showed elevated proplatelet formation and release, increasing prothrombogenic reticulated platelet counts. Gp1ba-Cre-mediated expression of Jak2VF in platelets (VFGp1ba) increased platelet counts to a similar level as in 20% Jak2VF CH mice while having no effect on leukocyte counts. Like Jak2VF CH mice, VFGp1ba mice showed enhanced platelet activation and accelerated arterial thrombosis. In Jak2VF CH, both Jak2VF and wild-type (WT) platelets showed increased activation, suggesting cross talk between mutant and WT platelets. Jak2VF platelets showed twofold to threefold upregulation of COX-1 and COX-2, particularly in young platelets, with elevated cPLA2 activation and thromboxane A2 production. Compared with controls, conditioned media from activated Jak2VF platelets induced greater activation of WT platelets that was reversed by a thromboxane receptor antagonist. Low-dose aspirin ameliorated carotid artery thrombosis in VFGp1ba and Jak2VF CH mice but not in WT control mice. This study shows accelerated arterial thrombosis and platelet activation in Jak2VF CH with a major role of increased reticulated Jak2VF platelets, which mediate thromboxane cross talk with WT platelets and suggests a potential beneficial effect of aspirin in JAK2VF CH.


Subject(s)
Clonal Hematopoiesis , Thrombosis , Animals , Humans , Mice , Aspirin/pharmacology , Aspirin/therapeutic use , Blood Platelets/metabolism , Mice, Knockout , Platelet Activation , Thrombosis/genetics , Thrombosis/metabolism
17.
Nature ; 588(7839): 658-663, 2020 12.
Article in English | MEDLINE | ID: mdl-33053563

ABSTRACT

Pathological degeneration of axons disrupts neural circuits and represents one of the hallmarks of neurodegeneration1-4. Sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) is a central regulator of this neurodegenerative process5-8, and its Toll/interleukin-1 receptor (TIR) domain exerts its pro-neurodegenerative action through NADase activity9,10. However, the mechanisms by which the activation of SARM1 is stringently controlled are unclear. Here we report the cryo-electron microscopy structures of full-length SARM1 proteins. We show that NAD+ is an unexpected ligand of the armadillo/heat repeat motifs (ARM) domain of SARM1. This binding of NAD+ to the ARM domain facilitated the inhibition of the TIR-domain NADase through the domain interface. Disruption of the NAD+-binding site or the ARM-TIR interaction caused constitutive activation of SARM1 and thereby led to axonal degeneration. These findings suggest that NAD+ mediates self-inhibition of this central pro-neurodegenerative protein.


Subject(s)
Armadillo Domain Proteins/antagonists & inhibitors , Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/metabolism , NAD/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Animals , Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/genetics , Binding Sites , Cryoelectron Microscopy , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Female , HEK293 Cells , Humans , Ligands , Mice , Models, Molecular , NAD+ Nucleosidase/metabolism , Protein Binding , Protein Domains , Sf9 Cells
18.
Mol Cell Proteomics ; 23(6): 100770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641226

ABSTRACT

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.


Subject(s)
Lysine , Protein Processing, Post-Translational , Proteome , STAT1 Transcription Factor , Silicosis , Animals , Silicosis/metabolism , Silicosis/drug therapy , Silicosis/pathology , STAT1 Transcription Factor/metabolism , Proteome/metabolism , Lysine/metabolism , Acetylation/drug effects , Mice , Silicon Dioxide , Lung/metabolism , Lung/drug effects , Lung/pathology , Mice, Inbred C57BL , Proteomics/methods , Male , Succinic Acid/metabolism
19.
Am J Hum Genet ; 109(1): 180-191, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34968422

ABSTRACT

Next-generation sequencing (NGS) technologies have transformed medical genetics. However, short-read lengths pose a limitation on identification of structural variants, sequencing repetitive regions, phasing of distant nucleotide changes, and distinguishing highly homologous genomic regions. Long-read sequencing technologies may offer improvements in the characterization of genes that are currently difficult to assess. We used a combination of targeted DNA capture, long-read sequencing, and a customized bioinformatics pipeline to fully assemble the RH region, which harbors variation relevant to red cell donor-recipient mismatch, particularly among patients with sickle cell disease. RHD and RHCE are a pair of duplicated genes located within an ∼175 kb region on human chromosome 1 that have high sequence similarity and frequent structural variations. To achieve the assembly, we utilized palindrome repeats in PacBio SMRT reads to obtain consensus sequences of 2.1 to 2.9 kb average length with over 99% accuracy. We used these long consensus sequences to identify 771 assembly markers and to phase the RHD-RHCE region with high confidence. The dataset enabled direct linkage between coding and intronic variants, phasing of distant SNPs to determine RHD-RHCE haplotypes, and identification of known and novel structural variations along with the breakpoints. A limiting factor in phasing is the frequency of heterozygous assembly markers and therefore was most successful in samples from African Black individuals with increased heterogeneity at the RH locus. Overall, this approach allows RH genotyping and de novo assembly in an unbiased and comprehensive manner that is necessary to expand application of NGS technology to high-resolution RH typing.


Subject(s)
Blood Transfusion , Gene Duplication , Genetic Variation , Rh-Hr Blood-Group System/genetics , Alleles , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Chromosome Breakage , Computational Biology/methods , Gene Frequency , Genetic Heterogeneity , Genetic Linkage , Genomics/methods , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
20.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37913894

ABSTRACT

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Mitogen-Activated Protein Kinases/metabolism , Smad3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL