Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.763
Filter
1.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37944511

ABSTRACT

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Subject(s)
Chromosomes, Artificial, Yeast , Genome, Fungal , Saccharomyces cerevisiae , Base Sequence , Chromosomes/genetics , Saccharomyces cerevisiae/genetics , Synthetic Biology
2.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37944512

ABSTRACT

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Subject(s)
Chromosomes, Artificial, Yeast , Genome, Fungal , Saccharomyces cerevisiae , Gene Expression Profiling , Proteomics , Saccharomyces cerevisiae/genetics , Synthetic Biology , RNA, Transfer/genetics , Chromosomes, Artificial, Yeast/genetics
3.
Cell ; 173(4): 989-1002.e13, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29606351

ABSTRACT

Huntington's disease (HD) is characterized by preferential loss of the medium spiny neurons in the striatum. Using CRISPR/Cas9 and somatic nuclear transfer technology, we established a knockin (KI) pig model of HD that endogenously expresses full-length mutant huntingtin (HTT). By breeding this HD pig model, we have successfully obtained F1 and F2 generation KI pigs. Characterization of founder and F1 KI pigs shows consistent movement, behavioral abnormalities, and early death, which are germline transmittable. More importantly, brains of HD KI pig display striking and selective degeneration of striatal medium spiny neurons. Thus, using a large animal model of HD, we demonstrate for the first time that overt and selective neurodegeneration seen in HD patients can be recapitulated by endogenously expressed mutant proteins in large mammals, a finding that also underscores the importance of using large mammals to investigate the pathogenesis of neurodegenerative diseases and their therapeutics.


Subject(s)
Huntingtin Protein/genetics , Huntington Disease/pathology , Animals , Body Weight , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , CRISPR-Cas Systems/genetics , Cerebral Cortex/pathology , Cerebral Cortex/ultrastructure , Corpus Striatum/pathology , Corpus Striatum/ultrastructure , Disease Models, Animal , Huntingtin Protein/metabolism , Huntington Disease/mortality , Magnetic Resonance Imaging , Neurons/metabolism , Neurons/pathology , Nuclear Transfer Techniques , Survival Rate , Swine , Trinucleotide Repeats
4.
Mol Cell ; 83(23): 4424-4437.e5, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37944526

ABSTRACT

Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.


Subject(s)
Cell Nucleus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Chromosomes/genetics , Genome, Fungal , Synthetic Biology/methods
5.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38418917

ABSTRACT

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Subject(s)
Alternative Splicing , Evolution, Molecular , Hominidae , T-Box Domain Proteins , Tail , Animals , Humans , Mice , Alternative Splicing/genetics , Alu Elements/genetics , Disease Models, Animal , Genome/genetics , Hominidae/anatomy & histology , Hominidae/genetics , Introns/genetics , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Phenotype , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/metabolism , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tail/anatomy & histology , Tail/embryology , Exons/genetics
6.
EMBO J ; 42(21): e114220, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37691541

ABSTRACT

DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.


Subject(s)
Gibberellins , Oryza , Gibberellins/metabolism , Gibberellins/pharmacology , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression , Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation, Plant
7.
Nat Methods ; 21(4): 712-722, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491270

ABSTRACT

Spatial clustering, which shares an analogy with single-cell clustering, has expanded the scope of tissue physiology studies from cell-centroid to structure-centroid with spatially resolved transcriptomics (SRT) data. Computational methods have undergone remarkable development in recent years, but a comprehensive benchmark study is still lacking. Here we present a benchmark study of 13 computational methods on 34 SRT data (7 datasets). The performance was evaluated on the basis of accuracy, spatial continuity, marker genes detection, scalability, and robustness. We found existing methods were complementary in terms of their performance and functionality, and we provide guidance for selecting appropriate methods for given scenarios. On testing additional 22 challenging datasets, we identified challenges in identifying noncontinuous spatial domains and limitations of existing methods, highlighting their inadequacies in handling recent large-scale tasks. Furthermore, with 145 simulated data, we examined the robustness of these methods against four different factors, and assessed the impact of pre- and postprocessing approaches. Our study offers a comprehensive evaluation of existing spatial clustering methods with SRT data, paving the way for future advancements in this rapidly evolving field.


Subject(s)
Benchmarking , Gene Expression Profiling , Cluster Analysis , Spatial Analysis , Transcriptome
8.
Plant Cell ; 36(5): 1777-1790, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38190205

ABSTRACT

Crown roots are the main components of root systems in cereals. Elucidating the mechanisms of crown root formation is instrumental for improving nutrient absorption, stress tolerance, and yield in cereal crops. Several members of the WUSCHEL-related homeobox (WOX) and lateral organ boundaries domain (LBD) transcription factor families play essential roles in controlling crown root development in rice (Oryza sativa). However, the functional relationships among these transcription factors in regulating genes involved in crown root development remain unclear. Here, we identified LBD16 as an additional regulator of rice crown root development. We showed that LBD16 is a direct downstream target of WOX11, a key crown root development regulator in rice. Our results indicated that WOX11 enhances LBD16 transcription by binding to its promoter and recruiting its interaction partner JMJ706, a demethylase that removes histone H3 lysine 9 dimethylation (H3K9me2) from the LBD16 locus. In addition, we established that LBD16 interacts with WOX11, thereby impairing JMJ706-WOX11 complex formation and repressing its own transcriptional activity. Together, our results reveal a feedback system regulating genes that orchestrate crown root development in rice, in which LBD16 acts as a molecular rheostat.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Plant Roots , Transcription Factors , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Promoter Regions, Genetic/genetics
9.
Plant Cell ; 36(6): 2393-2409, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38489602

ABSTRACT

Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Plant Roots , Transcription Factors , Ethylenes/metabolism , Gene Expression Regulation, Plant/drug effects , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Soil/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics
10.
Nature ; 591(7849): 322-326, 2021 03.
Article in English | MEDLINE | ID: mdl-33658714

ABSTRACT

The RNA modification N6-methyladenosine (m6A) has critical roles in many biological processes1,2. However, the function of m6A in the early phase of mammalian development remains poorly understood. Here we show that the m6A reader YT521-B homology-domain-containing protein 1 (YTHDC1) is required for the maintenance of mouse embryonic stem (ES) cells in an m6A-dependent manner, and that its deletion initiates cellular reprogramming to a 2C-like state. Mechanistically, YTHDC1 binds to the transcripts of retrotransposons (such as intracisternal A particles, ERVK and LINE1) in mouse ES cells and its depletion results in the reactivation of these silenced retrotransposons, accompanied by a global decrease in SETDB1-mediated trimethylation at lysine 9 of histone H3 (H3K9me3). We further demonstrate that YTHDC1 and its target m6A RNAs act upstream of SETDB1 to repress retrotransposons and Dux, the master inducer of the two-cell stage (2C)-like program. This study reveals an essential role for m6A RNA and YTHDC1 in chromatin modification and retrotransposon repression.


Subject(s)
Adenosine/analogs & derivatives , Gene Silencing , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , RNA/genetics , Retroelements/genetics , Adenosine/metabolism , Animals , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Male , Mice , RNA/chemistry , RNA/metabolism , Repressor Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 121(2): e2308415120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38150477

ABSTRACT

Genomic DNA of the cyanophage S-2L virus is composed of 2-aminoadenine (Z), thymine (T), guanine (G), and cytosine (C), forming the genetic alphabet ZTGC, which violates Watson-Crick base pairing rules. The Z-base has an extra amino group on the two position that allows the formation of a third hydrogen bond with thymine in DNA strands. Here, we explored and expanded applications of this non-Watson-Crick base pairing in protein expression and gene editing. Both ZTGC-DNA (Z-DNA) and ZUGC-RNA (Z-RNA) produced in vitro show detectable compatibility and can be decoded in mammalian cells, including Homo sapiens cells. Z-crRNA can guide CRISPR-effectors SpCas9 and LbCas12a to cleave specific DNA through non-Watson-Crick base pairing and boost cleavage activities compared to A-crRNA. Z-crRNA can also allow for efficient gene and base editing in human cells. Together, our results help pave the way for potential strategies for optimizing DNA or RNA payloads for gene editing therapeutics and give insights to understanding the natural Z-DNA genome.


Subject(s)
Base Pairing , CRISPR-Cas Systems , DNA, Z-Form , Gene Editing , Humans , DNA/genetics , DNA/chemistry , DNA, Z-Form/genetics , Gene Editing/methods , RNA/genetics , RNA, Guide, CRISPR-Cas Systems , Thymine/chemistry
12.
Mol Cell ; 69(3): 505-516.e5, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29395066

ABSTRACT

Ubiquitination is a major mechanism that regulates numerous cellular processes, including autophagy, DNA damage signaling, and inflammation. While hundreds of ubiquitin ligases exist to conjugate ubiquitin onto substrates, approximately 100 deubiquitinases are encoded by the human genome. Thus, deubiquitinases are likely regulated by unidentified mechanisms to target distinct substrates and cellular functions. Here, we demonstrate that the deubiquitinase OTUD4, which nominally encodes a K48-specific deubiquitinase, is phosphorylated near its catalytic domain, activating a latent K63-specific deubiquitinase. Besides phosphorylation, this latter activity requires an adjacent ubiquitin-interacting motif, which increases the affinity of OTUD4 for K63-linked chains. We reveal the Toll-like receptor (TLR)-associated factor MyD88 as a target of this K63 deubiquitinase activity. Consequently, TLR-mediated activation of NF-κB is negatively regulated by OTUD4, and macrophages from Otud4-/- mice exhibit increased inflammatory signaling upon TLR stimulation. Our results reveal insights into how a deubiquitinase may modulate diverse processes through post-translational modification.


Subject(s)
Myeloid Differentiation Factor 88/metabolism , Ubiquitin-Specific Proteases/metabolism , Animals , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , HEK293 Cells , Humans , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation , Proteolysis , Signal Transduction , Toll-Like Receptors , Ubiquitin/metabolism , Ubiquitination
13.
Nucleic Acids Res ; 52(D1): D293-D303, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37889053

ABSTRACT

Gene regulatory networks (GRNs) are interpretable graph models encompassing the regulatory interactions between transcription factors (TFs) and their downstream target genes. Making sense of the topology and dynamics of GRNs is fundamental to interpreting the mechanisms of disease etiology and translating corresponding findings into novel therapies. Recent advances in single-cell multi-omics techniques have prompted the computational inference of GRNs from single-cell transcriptomic and epigenomic data at an unprecedented resolution. Here, we present scGRN (https://bio.liclab.net/scGRN/), a comprehensive single-cell multi-omics gene regulatory network platform of human and mouse. The current version of scGRN catalogs 237 051 cell type-specific GRNs (62 999 692 TF-target gene pairs), covering 160 tissues/cell lines and 1324 single-cell samples. scGRN is the first resource documenting large-scale cell type-specific GRN information of diverse human and mouse conditions inferred from single-cell multi-omics data. We have implemented multiple online tools for effective GRN analysis, including differential TF-target network analysis, TF enrichment analysis, and pathway downstream analysis. We also provided details about TF binding to promoters, super-enhancers and typical enhancers of target genes in GRNs. Taken together, scGRN is an integrative and useful platform for searching, browsing, analyzing, visualizing and downloading GRNs of interest, enabling insight into the differences in regulatory mechanisms across diverse conditions.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Single-Cell Analysis , Transcription Factors , Animals , Humans , Mice , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
14.
Nucleic Acids Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989619

ABSTRACT

The type III-A (Csm) CRISPR-Cas systems are multi-subunit and multipronged prokaryotic enzymes in guarding the hosts against viral invaders. Beyond cleaving activator RNA transcripts, Csm confers two additional activities: shredding single-stranded DNA and synthesizing cyclic oligoadenylates (cOAs) by the Cas10 subunit. Known Cas10 enzymes exhibit a fascinating diversity in cOA production. Three major forms-cA3, cA4 and cA6have been identified, each with the potential to trigger unique downstream effects. Whereas the mechanism for cOA-dependent activation is well characterized, the molecular basis for synthesizing different cOA isoforms remains unclear. Here, we present structural characterization of a cA6-producing Csm complex during its activation by an activator RNA. Analysis of the captured intermediates of cA6 synthesis suggests a 3'-to-5' nucleotidyl transferring process. Three primary adenine binding sites can be identified along the chain elongation path, including a unique tyrosine-threonine dyad found only in the cA6-producing Cas10. Consistently, disrupting the tyrosine-threonine dyad specifically impaired cA6 production while promoting cA4 production. These findings suggest that Cas10 utilizes a unique enzymatic mechanism for forming the phosphodiester bond and has evolved distinct strategies to regulate the cOA chain length.

15.
Nucleic Acids Res ; 52(D1): D285-D292, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897340

ABSTRACT

Chromatin accessibility profiles at single cell resolution can reveal cell type-specific regulatory programs, help dissect highly specialized cell functions and trace cell origin and evolution. Accurate cell type assignment is critical for effectively gaining biological and pathological insights, but is difficult in scATAC-seq. Hence, by extensively reviewing the literature, we designed scATAC-Ref (https://bio.liclab.net/scATAC-Ref/), a manually curated scATAC-seq database aimed at providing a comprehensive, high-quality source of chromatin accessibility profiles with known cell labels across broad cell types. Currently, scATAC-Ref comprises 1 694 372 cells with known cell labels, across various biological conditions, >400 cell/tissue types and five species. We used uniform system environment and software parameters to perform comprehensive downstream analysis on these chromatin accessibility profiles with known labels, including gene activity score, TF enrichment score, differential chromatin accessibility regions, pathway/GO term enrichment analysis and co-accessibility interactions. The scATAC-Ref also provided a user-friendly interface to query, browse and visualize cell types of interest, thereby providing a valuable resource for exploring epigenetic regulation in different tissues and cell types.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Chromatin , Databases, Genetic , Single-Cell Analysis , Chromatin/genetics , Epigenesis, Genetic , Humans , Animals
16.
Proc Natl Acad Sci U S A ; 120(42): e2219666120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37824529

ABSTRACT

Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.


Subject(s)
White Matter , White Matter/diagnostic imaging , White Matter/physiology , Brain Mapping , Brain/diagnostic imaging , Brain/physiology , Gray Matter/diagnostic imaging , Gray Matter/physiology , Magnetic Resonance Imaging
17.
Proc Natl Acad Sci U S A ; 120(52): e2311752120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38134199

ABSTRACT

The emergence of highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that are resistant to the current COVID-19 vaccines highlights the need for continued development of broadly protective vaccines for the future. Here, we developed two messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccines, TU88mCSA and ALCmCSA, using the ancestral SARS-CoV-2 spike sequence, optimized 5' and 3' untranslated regions (UTRs), and LNP combinations. Our data showed that these nanocomplexes effectively activate CD4+ and CD8+ T cell responses and humoral immune response and provide complete protection against WA1/2020, Omicron BA.1 and BQ.1 infection in hamsters. Critically, in Omicron BQ.1 challenge hamster models, TU88mCSA and ALCmCSA not only induced robust control of virus load in the lungs but also enhanced protective efficacy in the upper respiratory airways. Antigen-specific immune analysis in mice revealed that the observed cross-protection is associated with superior UTRs [Carboxylesterase 1d (Ces1d)/adaptor protein-3ß (AP3B1)] and LNP formulations that elicit robust lung tissue-resident memory T cells. Strong protective effects of TU88mCSA or ALCmCSA against both WA1/2020 and VOCs suggest that this mRNA-LNP combination can be a broadly protective vaccine platform in which mRNA cargo uses the ancestral antigen sequence regardless of the antigenic drift. This approach could be rapidly adapted for clinical use and timely deployment of vaccines against emerging and reemerging VOCs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cricetinae , Animals , Humans , Mice , RNA, Messenger/genetics , COVID-19 Vaccines/genetics , mRNA Vaccines , SARS-CoV-2/genetics , COVID-19/prevention & control , 3' Untranslated Regions , Antibodies, Neutralizing , Antibodies, Viral
18.
J Biol Chem ; 300(3): 105704, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309506

ABSTRACT

Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.


Subject(s)
Autophagy , Ecdysterone , Helicoverpa armigera , Histone Acetyltransferases , Histones , Protein Processing, Post-Translational , Acetylation , Autophagy/genetics , Ecdysterone/metabolism , Promoter Regions, Genetic , Helicoverpa armigera/genetics , Helicoverpa armigera/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/metabolism
19.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37204192

ABSTRACT

Accurately predicting the antigen-binding specificity of adaptive immune receptors (AIRs), such as T-cell receptors (TCRs) and B-cell receptors (BCRs), is essential for discovering new immune therapies. However, the diversity of AIR chain sequences limits the accuracy of current prediction methods. This study introduces SC-AIR-BERT, a pre-trained model that learns comprehensive sequence representations of paired AIR chains to improve binding specificity prediction. SC-AIR-BERT first learns the 'language' of AIR sequences through self-supervised pre-training on a large cohort of paired AIR chains from multiple single-cell resources. The model is then fine-tuned with a multilayer perceptron head for binding specificity prediction, employing the K-mer strategy to enhance sequence representation learning. Extensive experiments demonstrate the superior AUC performance of SC-AIR-BERT compared with current methods for TCR- and BCR-binding specificity prediction.


Subject(s)
Receptors, Antigen, B-Cell , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, B-Cell/genetics , Neural Networks, Computer , Antibody Specificity
20.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36567255

ABSTRACT

Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.


Subject(s)
Asthma , COVID-19 , Humans , Artificial Intelligence , ROC Curve , Software
SELECTION OF CITATIONS
SEARCH DETAIL