Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Nanotechnology ; 30(26): 265705, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-30802889

ABSTRACT

Plastic film capacitors suffer from low charge storage capacity due to the low dielectric constant of the polymer (<10). We have devised a polyvinylidene fluoride (PVDF) composite film filled with small graphene oxide (GO) sheets that have aromatic molecules attached to their surfaces. The use of 4,4'-oxydiphenol molecules to functionalize graphene sheets is found to have a remarkable effect on enhancing the dielectric permittivity as well as reducing the electrical conductivity of the nanocomposite. When under an electric field, these molecules with an angled molecular geometry act as aligned electric dipoles to largely enhance the dielectric permittivity of the composite, reaching a level two orders of magnitude higher than that of the counterpart filled with blank graphene sheets. Also, the aromatic molecules on the graphene surface act as resistive barriers that block charge transfer between interconnected graphene sheets. As a consequence, the electric conductivity of the composite can be decreased by two orders of magnitude. The PVDF composite filled with functionalized graphene shows a percolation threshold of 13 wt% and a high dielectric constant of 1091 at 100 Hz at this point.

2.
Small ; 12(13): 1688-701, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26865507

ABSTRACT

With the development of flexible electronic devices and large-scale energy storage technologies, functional polymer-matrix nanocomposites with high permittivity (high-k) are attracting more attention due to their ease of processing, flexibility, and low cost. The percolation effect is often used to explain the high-k characteristic of polymer composites when the conducting functional fillers are dispersed into polymers, which gives the polymer composite excellent flexibility due to the very low loading of fillers. Carbon nanotubes (CNTs) and graphene nanosheets (GNs), as one-dimensional (1D) and two-dimensional (2D) carbon nanomaterials respectively, have great potential for realizing flexible high-k dielectric nanocomposites. They are becoming more attractive for many fields, owing to their unique and excellent advantages. The progress in dielectric fields by using 1D/2D carbon nanomaterials as functional fillers in polymer composites is introduced, and the methods and mechanisms for improving dielectric properties, breakdown strength and energy storage density of their dielectric nanocomposites are examined. Achieving a uniform dispersion state of carbon nanomaterials and preventing the development of conductive networks in their polymer composites are the two main issues that still need to be solved in dielectric fields for power energy storage. Recent findings, current problems, and future perspectives are summarized.

3.
Adv Mater ; 36(7): e2307804, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37844305

ABSTRACT

To match the increasing miniaturization and integration of electronic devices, higher requirements are put on the dielectric and thermal properties of the dielectrics to overcome the problems of delayed signal transmission and heat accumulation. Here, a 3D  porous thermal conductivity network is successfully constructed inside the polyimide (PI) matrix by the combination of ionic liquids (IL) and calcium fluoride (CaF2 ) nanofillers, motivated by the bubble-hole forming orientation force. Benefiting from the 3D thermal network formed by IL as a porogenic template and "crystal-like phase" structures induced by CaF2 - polyamide acid charge transfer, IL-10 vol% CaF2 /PI porous film exhibits a low permittivity of 2.14 and a thermal conductivity of 7.22 W m-1 K-1 . This design strategy breaks the bottleneck that low permittivity and high thermal conductivity in microelectronic systems are difficult to be jointly controlled, and provides a feasible solution for the development of intelligent microelectronics.

4.
Mater Horiz ; 11(5): 1305-1314, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38169374

ABSTRACT

Elastomers are widely used in traditional industries and new intelligent fields. However, they are inevitably damaged by electricity, heat, force, etc. during the working process. With the continuous improvement of reliability and environmental protection requirements in human production and living, it is vital to develop elastomer materials with good mechanical properties that are not easily damaged and can self-heal after being damaged. Nevertheless, there are often contradictions between mechanical properties and self-healing as well as toughness, strength, and ductility. Herein, a strong and dynamic decuple hydrogen bonding based on carbon hydrazide (CHZ) is reported, accompanied with soft polydimethylsiloxane (PDMS) chains to prepare self-healing (efficiency 98.7%), recyclable, and robust elastomers (CHZ-PDMS). The strategy of decuple hydrogen bonding will significantly impact the study of the mechanical properties of elastomers. High stretchability (1731%) and a high toughness of 23.31 MJ m-3 are achieved due to the phase-separated structure and energy dissipation. The recyclability of CHZ-PDMS further supports the concept of environmental protection. The application of CHZ-PDMS as a flexible strain sensor exhibited high sensitivity.

5.
Mater Horiz ; 10(12): 5835-5846, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37843469

ABSTRACT

Polymer dielectric materials with excellent temperature stability are urgently needed for the ever-increasing energy storage requirements under harsh high-temperature conditions. In this work, a novel diamine monomer (bis(2-cyano-4-aminophenyl)amine) was successfully synthesized to prepare a series of cyano-containing polyimides (CPI-1-3), which possessed excellent dielectric properties and high thermostability. The maximum dielectric permittivity was up to 5.5 at 102 Hz for CPI-3, being 2.5 times higher than that of commercially used BOPP. In comparison, the CPI-1 exhibited an outstanding breakdown strength of 433 MV m-1 and a high energy density of 2.5 J cm-3 even at 250 °C, which was the highest value reported under the same conditions. The synthesized CPIs through such an intrinsic approach are potential candidate materials for energy storage and even other applications under simultaneously harsh electrical and thermal conditions.

6.
Adv Mater ; 35(39): e2301185, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36906511

ABSTRACT

Polyimides (PIs) are widely used in circuit components, electrical insulators, and power systems in modern electronic devices and large electrical appliances. Electrical/mechanical damage of materials are important factors that threaten reliability and service lifetime. Dynamic (self-healable, recyclable and degradable) PIs, a promising class of materials that successfully improve electrical/mechanical properties after damage, are anticipated to solve this issue. The viewpoints and perspectives on the status and future trends of dynamic PI based on a few existing documents are shared. The main damage forms of PI dielectric materials in the application process are first introduced, and initial strategies and schemes to solve these problems are proposed. Fundamentally, the bottleneck issues faced by the development of dynamic PIs are indicated, and the relationship between various damage forms and the universality of the method is evaluated. The potential mechanism of the dynamic PI to deal with electrical damage is highlighted and several feasible prospective schemes to address electrical damage are discussed. This study is concluded by presenting a short outlook and future improvements to systems, challenges, and solutions of dynamic PI in electrical insulation. The summary of theory and practice should encourage policy development favoring energy conservation and environmental protection and promoting sustainability.

7.
Adv Mater ; 35(2): e2207451, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36281805

ABSTRACT

Dielectric polyimides (PIs) are ubiquitous as insulation in electrical power systems and electronic devices. Generally, dynamic polyimide is required to solve irreversible failure processes of electrical or mechanical damage, for example, under high temperature, pressure, and field strength. The challenge lies in the design of the molecular structure of rigid polyimide to achieve dynamic reversibility. Herein, a low-molecular-weight polyimide gene unit is designed to crosslink with polyimide ligase to prepare the smart film. Interestingly, due to the variability of gene unit and ligase combinations, the polyimide films combining hardness with softness are designed into three forms via a "Mimosa-like" bionic strategy to adapt to different application scenarios. Meanwhile, the films have good degradation efficiency, excellent recyclability, and can be self-healable, which makes them reuse. Clearly, the films can be used in the preparation of ultrafast sensors with a response time ≈0.15 s and the application of corona-resistant films with 100% recovery. Furthermore, the construction of polyimide and carbon-fiber-reinforced composites (CFRCs) has been verified to apply to the worse environment. Nicely, the composites have the property of multiple cycles and the non-destructive recycle rate of carbon fiber (CF) is as high as 100%. The design idea of preparing high-strength dynamic polyimide by crosslinking simple polyimide gene unit with ligase could provide a good foundation and a clear case for the sustainable development of electrical and electronic polyimides, from the perspective of Mimosa bionics.


Subject(s)
Bionics , Mimosa , Hardness , Electronics , Electricity
8.
ACS Appl Mater Interfaces ; 15(1): 1105-1114, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36584331

ABSTRACT

The great development potential of polymer dielectric capacitors in harsh environments urgently requires enhancing capacitive performance at high temperatures. However, the exponentially increased conduction loss at high temperature and high field results in a drastic drop in energy density and charge-discharge efficiency. Here, a bilayer-structured polyimide (PI) composite film containing a wide-band gap inorganic layer as a charge blocking layer is designed. The inorganic layer improves the charge trapping ability and regulates the charge mobility at the electrode/dielectric interface. The charge injection mechanism in the interface-optimized PI/boron nitride nanosheet (BNNS) composite films is investigated by finite element simulation, and the effect of the BNNS layer on high temperature conduction is further understood. An appropriate thickness of the charge blocking layer establishes an effective energy barrier. Therefore, the composite films exhibit significantly suppressed conduction loss and excellent capacitive performance at a high temperature. A high energy density of 4.37 J cm-3 with efficiency of 92% is obtained at 200 °C and 500 MV m-1, which is superior to reported high-temperature dielectric polymers and their composite films. This work provides a promising approach to improve the energy storage performance of polymer materials at high temperatures.

9.
Adv Mater ; : e2304175, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37382198

ABSTRACT

Polyimides (PIs) used in advanced electrical and electronic devices can be electrically/mechanically damaged, resulting in a significant waste of resources. Closed-loop chemical recycling may prolong the service life of synthetic polymers. However, the design of dynamic covalent bonds for preparing chemically recyclable crosslinked PIs remains a challenging task. Herein, new crosslinked PI films containing a PI oligomer, chain extender, and crosslinker are reported. They exhibit superior recyclability and excellent self-healable ability owing to the synergistic effect of the chain extender and crosslinker. The produced films can be completely depolymerized in an acidic solution at ambient temperature, leading to efficient monomer recovery. The recovered monomers may be used to remanufacture crosslinked PIs without deteriorating their original performance. In particular, the designed films can serve as corona-resistant films with a recovery rate of approximately 100%. Furthermore, carbon fiber reinforced composites (CFRCs) with PI matrices are suitable for harsh environments and can be recycled multiple times at a non-destructive recycling rate up to 100%. The preparation of high-strength dynamic covalent adaptable PI hybrid films from simple PI oligomers, chain extenders, and crosslinkers may provide a solid basis for sustainable development in the electrical and electronic fields.

10.
Materials (Basel) ; 14(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771796

ABSTRACT

As the miniaturization of electronic appliances and microprocessors progresses, low-permittivity interlayer materials are becoming increasingly important for their suppression of electronic crosstalk, signal propagation delay and loss, and so forth. Herein, a kind of copolyimide (CPI) film with a "fluorene" rigid conjugated structure was prepared successfully. By introducing 9,9-Bis(3-fluoro-4-aminophenyl) fluorene as the rigid conjugated structure monomer, a series of CPI films with different molecular weights were fabricated by in situ polymerization, which not only achieved the reduction of permittivity but also maintained excellent thermodynamic stability. Moreover, the hydrophobicity of the CPI film was also improved with the increasing conjugated structure fraction. The lowest permittivity reached 2.53 at 106 Hz, while the thermal decomposition temperature (Td5%) was up to 530 °C, and the tensile strength was ≥ 96 MPa. Thus, the CPI films are potential dielectric materials for microelectronic and insulation applications.

SELECTION OF CITATIONS
SEARCH DETAIL