ABSTRACT
Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.
Subject(s)
Complement C3 , Intestinal Mucosa , Microbiota , Animals , Humans , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Neutrophils , Complement C3/metabolism , Stromal Cells/metabolismABSTRACT
The human gut microbiome constantly converts natural products derived from the host and diet into numerous bioactive metabolites1-3. Dietary fats are essential micronutrients that undergo lipolysis to release free fatty acids (FAs) for absorption in the small intestine4. Gut commensal bacteria modify some unsaturated FAs-for example, linoleic acid (LA)-into various intestinal FA isomers that regulate host metabolism and have anticarcinogenic properties5. However, little is known about how this diet-microorganism FA isomerization network affects the mucosal immune system of the host. Here we report that both dietary factors and microbial factors influence the level of gut LA isomers (conjugated LAs (CLAs)) and that CLAs in turn modulate a distinct population of CD4+ intraepithelial lymphocytes (IELs) that express CD8αα in the small intestine. Genetic abolition of FA isomerization pathways in individual gut symbionts significantly decreases the number of CD4+CD8αα+ IELs in gnotobiotic mice. Restoration of CLAs increases CD4+CD8αα+ IEL levels in the presence of the transcription factor hepatocyte nuclear factor 4γ (HNF4γ). Mechanistically, HNF4γ facilitates CD4+CD8αα+ IEL development by modulating interleukin-18 signalling. In mice, specific deletion of HNF4γ in T cells leads to early mortality from infection by intestinal pathogens. Our data reveal a new role for bacterial FA metabolic pathways in the control of host intraepithelial immunological homeostasis by modulating the relative number of CD4+ T cells that were CD4+CD8αα+.
Subject(s)
Fatty Acids , Gastrointestinal Microbiome , Intraepithelial Lymphocytes , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Isomerism , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, alpha-beta/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Lipolysis , Linoleic Acid/metabolism , Immunity, MucosalABSTRACT
The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.
Subject(s)
Drug Resistance, Neoplasm , Immunotherapy , Melanoma , Microbiota , Animals , Humans , Mice , Cell Adhesion Molecules, Neuronal , Disease Models, Animal , Down-Regulation , Drug Resistance, Neoplasm/drug effects , Fecal Microbiota Transplantation , Germ-Free Life , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/immunology , Melanoma/microbiology , Melanoma/therapy , Protein Binding/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunologyABSTRACT
The metabolic pathways encoded by the human gut microbiome constantly interact with host gene products through numerous bioactive molecules1. Primary bile acids (BAs) are synthesized within hepatocytes and released into the duodenum to facilitate absorption of lipids or fat-soluble vitamins2. Some BAs (approximately 5%) escape into the colon, where gut commensal bacteria convert them into various intestinal BAs2 that are important hormones that regulate host cholesterol metabolism and energy balance via several nuclear receptors and/or G-protein-coupled receptors3,4. These receptors have pivotal roles in shaping host innate immune responses1,5. However, the effect of this host-microorganism biliary network on the adaptive immune system remains poorly characterized. Here we report that both dietary and microbial factors influence the composition of the gut BA pool and modulate an important population of colonic FOXP3+ regulatory T (Treg) cells expressing the transcription factor RORγ. Genetic abolition of BA metabolic pathways in individual gut symbionts significantly decreases this Treg cell population. Restoration of the intestinal BA pool increases colonic RORγ+ Treg cell counts and ameliorates host susceptibility to inflammatory colitis via BA nuclear receptors. Thus, a pan-genomic biliary network interaction between hosts and their bacterial symbionts can control host immunological homeostasis via the resulting metabolites.
Subject(s)
Bile Acids and Salts/metabolism , Gastrointestinal Microbiome , Homeostasis , Intestines/immunology , Intestines/microbiology , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Bile Acids and Salts/chemistry , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/geneticsABSTRACT
Although maternal antibodies protect newborn babies from infection1,2, little is known about how protective antibodies are induced without prior pathogen exposure. Here we show that neonatal mice that lack the capacity to produce IgG are protected from infection with the enteric pathogen enterotoxigenic Escherichia coli by maternal natural IgG antibodies against the maternal microbiota when antibodies are delivered either across the placenta or through breast milk. By challenging pups that were fostered by either maternal antibody-sufficient or antibody-deficient dams, we found that IgG derived from breast milk was crucial for protection against mucosal disease induced by enterotoxigenic E. coli. IgG also provides protection against systemic infection by E. coli. Pups used the neonatal Fc receptor to transfer IgG from milk into serum. The maternal commensal microbiota can induce antibodies that recognize antigens expressed by enterotoxigenic E. coli and other Enterobacteriaceae species. Induction of maternal antibodies against a commensal Pantoea species confers protection against enterotoxigenic E. coli in pups. This role of the microbiota in eliciting protective antibodies to a specific neonatal pathogen represents an important host defence mechanism against infection in neonates.
Subject(s)
Antibodies/immunology , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/prevention & control , Immunity, Maternally-Acquired/immunology , Infant, Newborn/immunology , Microbiota/immunology , Milk, Human/immunology , Animals , Antibodies/blood , Antibodies/metabolism , Breast Feeding , Cross Reactions/immunology , Escherichia coli Infections/microbiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Male , Mice , Mothers , Pantoea/immunology , Receptors, Fc/immunology , Receptors, Fc/metabolism , Symbiosis/immunologyABSTRACT
Proofreading (editing) of mischarged tRNAs by cytoplasmic aminoacyl-tRNA synthetases (aaRSs), whose impairment causes neurodegeneration and cardiac diseases, is of high significance for protein homeostasis. However, whether mitochondrial translation needs fidelity and the significance of editing by mitochondrial aaRSs have been unclear. Here, we show that mammalian cells critically depended on the editing of mitochondrial threonyl-tRNA synthetase (mtThrRS, encoded by Tars2), disruption of which accumulated Ser-tRNAThr and generated a large abundance of Thr-to-Ser misincorporated peptides in vivo. Such infidelity impaired mitochondrial translation and oxidative phosphorylation, causing oxidative stress and cell cycle arrest in the G0/G1 phase. Notably, reactive oxygen species (ROS) scavenging by N-acetylcysteine attenuated this abnormal cell proliferation. A mouse model of heart-specific defective mtThrRS editing was established. Increased ROS levels, blocked cardiomyocyte proliferation, contractile dysfunction, dilated cardiomyopathy, and cardiac fibrosis were observed. Our results elucidate that mitochondria critically require a high level of translational accuracy at Thr codons and highlight the cellular dysfunctions and imbalance in tissue homeostasis caused by mitochondrial mistranslation.
Subject(s)
Amino Acyl-tRNA Synthetases , Cardiomyopathies , Heart Diseases , Animals , Mice , Reactive Oxygen Species , Cell Cycle Checkpoints , Oxidative Stress , MammalsABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic and the measures taken by authorities to control its spread have altered human behavior and mobility patterns in an unprecedented way. However, it remains unclear whether the population response to a COVID-19 outbreak varies within a city or among demographic groups. Here, we utilized passively recorded cellular signaling data at a spatial resolution of 1 km × 1 km for over 5 million users and epidemiological surveillance data collected during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 outbreak from February to June 2022 in Shanghai, China, to investigate the heterogeneous response of different segments of the population at the within-city level and examine its relationship with the actual risk of infection. Changes in behavior were spatially heterogenous within the city and population groups and associated with both the infection incidence and adopted interventions. We also found that males and individuals aged 30 to 59 y old traveled more frequently, traveled longer distances, and their communities were more connected; the same groups were also associated with the highest SARS-CoV-2 incidence. Our results highlight the heterogeneous behavioral change of the Shanghai population to the SARS-CoV-2 Omicron BA.2 outbreak and the effect of heterogenous behavior on the spread of COVID-19, both spatially and demographically. These findings could be instrumental for the design of targeted interventions for the control and mitigation of future outbreaks of COVID-19, and, more broadly, of respiratory pathogens.
Subject(s)
COVID-19 , Male , Humans , COVID-19/epidemiology , China/epidemiology , SARS-CoV-2 , Disease Outbreaks , Group ProcessesABSTRACT
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and stereotyped behaviors. Although major advances in basic research on autism have been achieved in the past decade, and behavioral interventions can mitigate the difficulties that individuals with autism experience, little is known about the many fundamental issues of the interventions, and no specific medication has demonstrated efficiency for the core symptoms of ASD. Intermittent hypobaric hypoxia (IHH) is characterized by repeated exposure to lowered atmospheric pressure and oxygen levels, which triggers multiple physiological adaptations in the body. Here, using two mouse models of ASD, male Shank3B -/- and Fmr1 -/y mice, we found that IHH training at an altitude of 5,000â m for 4â h per day, for 14 consecutive days, ameliorated autistic-like behaviors. Moreover, IHH training enhanced hypoxia inducible factor (HIF) 1α in the dorsal raphe nucleus (DRN) and activated the DRN serotonergic neurons. Infusion of cobalt chloride into the DRN, to mimic IHH in increasing HIF1α expression or genetically knockdown PHD2 to upregulate HIF1α expression in the DRN serotonergic neurons, alleviated autistic-like behaviors in Shank3B -/- mice. In contrast, downregulation of HIF1α in DRN serotonergic neurons induced compulsive behaviors. Furthermore, upregulating HIF1α in DRN serotonergic neurons increased the firing rates of these neurons, whereas downregulation of HIF1α in DRN serotonergic neurons decreased their firing rates. These findings suggest that IHH activated DRN serotonergic neurons via upregulation of HIF1α, and thus ameliorated autistic-like phenotypes, providing a novel therapeutic option for ASD.
Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Male , Animals , Autistic Disorder/genetics , Autistic Disorder/therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Dorsal Raphe Nucleus , Serotonergic Neurons/physiology , Hypoxia , Phenotype , Fragile X Mental Retardation ProteinABSTRACT
3'-Untranslated regions (3'UTRs) are recognized for their role in regulating mRNA turnover while the turnover of a specific group of mRNAs mediated by coding sequences (CDS) remains poorly understood. N4BP1 is a critical inflammatory regulator in vivo with a molecular mechanism that is not yet clearly defined. Our study reveals that N4BP1 efficiently degrades its mRNA targets via CDS rather than the 3'-UTR. This CDS-dependent mRNA turnover mechanism appears to be a general feature of N4BP1, as evidenced by testing multiple mRNA substrates, such as Fos-C, Fos-B, Jun-B and CXCL1. Detailed mapping of the motif identified a crucial 33nt (289-322) sequence near the 5'-end of Fos-C-CDS, where the presence of polyC is necessary for N4BP1-mediated degradation. Functional studies involving domain deletion and point mutations showed that both the KH and NYN domains are essential for N4BP1 to restrict mRNA substrates. The function of N4BP1 in mRNA turnover is not dependent on nonsense-mediated decay as it efficiently restricts mRNA substrates even in cells deficient in UPF1, UPF3A, and UPF3B. Additionally, the function of N4BP1 is not reliant on LUC7L3 despite its known association with this protein. Our findings suggest that N4BP1 acts as an endoribonuclease to degrade mRNA substrates primarily through coding sequences containing a C-rich motif.
ABSTRACT
BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease. Currently, there is no effective therapy for reducing cardiac I/R injury. Damage-associated molecular patterns are endogenous molecules released after cellular damage to exaggerate tissue inflammation and injury. RIPK3 (receptor-interacting protein kinase 3), a well-established intracellular mediator of cell necroptosis and inflammation, serves as a circulating biomarker of multiple diseases. However, whether extracellular RIPK3 also exerts biological functions in cardiac I/R injury remains totally unknown. METHODS: Patients with acute myocardial infarction receiving percutaneous coronary intervention (PCI) were recruited independently in the discovery cohort (103 patients) and validation cohort (334 patients), and major adverse cardiovascular events were recorded. Plasma samples were collected before and after PCI (6 and 24 h) for RIPK3 concentration measurement. Cultured neonatal rat ventricular myocytes, macrophages and endothelial cells, and in vivo mouse models with myocardial injury induced by I/R (or hypoxia/reoxygenation) were used to investigate the role and mechanisms of extracellular RIPK3. Another cohort including patients with acute myocardial infarction receiving PCI and healthy volunteers was recruited to further explore the mechanisms of extracellular RIPK3. RESULTS: In the discovery cohort, elevated plasma RIPK3 levels after PCI are associated with poorer short- and long-term outcomes in patients with acute myocardial infarction, as confirmed in the validation cohort. In both cultured cells and in vivo mouse models, recombinant RIPK3 protein exaggerated myocardial I/R (or hypoxia/reoxygenation) injury, which was alleviated by the RIPK3 antibody. Mechanistically, RIPK3 acted as a damage-associated molecular pattern and bound with RAGE (receptor of advanced glycation end-products), subsequently activating CaMKII (Ca2+/calmodulin-dependent kinase II) to elicit the detrimental effects. The positive correlation between plasma RIPK3 concentrations and CaMKII phosphorylation in human peripheral blood mononuclear cells was confirmed. CONCLUSIONS: We identified the positive relationship between plasma RIPK3 concentrations and the risk of major adverse cardiovascular events in patients with acute myocardial infarction receiving PCI. As a damage-associated molecular pattern, extracellular RIPK3 plays a causal role in multiple pathological conditions during cardiac I/R injury through RAGE/CaMKII signaling. These findings expand our understanding of the physiological and pathological roles of RIPK3, and also provide a promising therapeutic target for myocardial I/R injury and the associated complications.
ABSTRACT
SUMMARY: Sketching technologies have recently emerged as a promising solution for real-time, large-scale phylogenetic analysis. However, existing sketching-based phylogenetic tools exhibit drawbacks, including platform restrictions, deficiencies in tree visualization, and inherent distance estimation bias. These limitations collectively impede the overall convenience and efficiency of the analysis. In this study, we introduce Kssdtree, an interactive Python package designed to address these challenges. Kssdtree surpasses other sketching-based tools by demonstrating superior performance in terms of both accuracy and time efficiency on comprehensive benchmarking datasets. Notably, Kssdtree offers key advantages such as intra-species phylogenomic analysis and GTDB-based phylogenetic placement analysis, significantly enhancing the scope and depth of phylogenetic investigations. Through extensive evaluations and comparisons, Kssdtree stands out as an efficient and versatile method for real-time, large-scale phylogenetic analysis. AVAILABILITY AND IMPLEMENTATION: The Kssdtree Python package is freely accessible at https://pypi.org/project/kssdtree and source code is available at https://github.com/yhlink/kssdtree. The documentation and instantiation for the software is available at https://kssdtree.readthedocs.io/en/latest. The video tutorial is available at https://youtu.be/_6hg59Yn-Ws.
Subject(s)
Phylogeny , Software , Computational Biology/methodsABSTRACT
The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.
Subject(s)
Colorectal Neoplasms , Lipidomics , Phosphatidylethanolamines , Tandem Mass Spectrometry , Tongue , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Lipidomics/methods , Male , Female , Tongue/microbiology , Tongue/metabolism , Tongue/pathology , Tongue/chemistry , Middle Aged , Tandem Mass Spectrometry/methods , Phosphatidylethanolamines/metabolism , Phosphatidylethanolamines/analysis , Aged , Chromatography, Liquid , Lipids/analysis , Lipids/chemistry , Triglycerides/metabolism , Triglycerides/analysis , Adenoma/metabolism , Adenoma/microbiology , Sphingomyelins/analysis , Sphingomyelins/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/chemistry , Plasmalogens/analysis , Plasmalogens/metabolism , Plasmalogens/chemistry , Case-Control Studies , Ethanolamines/metabolism , Ethanolamines/analysis , Ethanolamines/chemistry , Ceramides/metabolism , Ceramides/analysis , AdultABSTRACT
Asymmetric enamine alkylation represents a powerful tool for stereoselective C-C bond formation; in contrast, the development of enantioselective enamine acylation remains elusive. Here, we report that a chiral phosphoric acid can render an in-situ-formed enamine to undergo a stereoselective intramolecular α-carbon acylation, providing an alternative approach for the synthesis of useful pyrrolinones and indolinones bearing tetrasubstituted stereocenters. Utilizing an effective integration of the desymmetrization strategy and bifunctional organocatalysis, the first example of enantioselective enamine acylation is achieved by employing readily available aminomalonic esters and cyclic ketones. Instead of reactive and moisture-sensitive acyl chlorides, common esters with low electrophilicity were successfully used as efficient acylating reagents via hydrogen bonding interactions. The utility is demonstrated in the concise and enantioselective synthesis of (+)-LipidGreen I and II. Experimental studies and DFT calculations establish the reaction pathway and the origin of stereocontrol.
ABSTRACT
TARS2 encodes human mitochondrial threonyl tRNA-synthetase that is responsible for generating mitochondrial Thr-tRNAThr and clearing mischarged Ser-tRNAThr during mitochondrial translation. Pathogenic variants in TARS2 have hitherto been reported in a pair of siblings and an unrelated patient with an early onset mitochondrial encephalomyopathy and a combined respiratory chain enzyme deficiency in muscle. We here report five additional unrelated patients with TARS2-related mitochondrial diseases, expanding the clinical phenotype to also include epilepsy, dystonia, hyperhidrosis and severe hearing impairment. In addition, we document seven novel TARS2 variants-one nonsense variant and six missense variants-that we demonstrate are pathogenic and causal of the disease presentation based on population frequency, homology modeling and functional studies that show the effects of the pathogenic variants on TARS2 stability and/or function.
Subject(s)
Mitochondrial Diseases , Mitochondrial Encephalomyopathies , Threonine-tRNA Ligase , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Encephalomyopathies/genetics , Mutation , Phenotype , RNA, Transfer, Thr/genetics , Threonine-tRNA Ligase/geneticsABSTRACT
Major histocompatibility complex (MHC) could serve as a potential biomarker for tumor immunotherapy, however, it is not yet known whether MHC could distinguish potential beneficiaries. Single-cell RNA sequencing datasets derived from patients with immunotherapy were collected to elucidate the association between MHC and immunotherapy response. A novel MHCsig was developed and validated using large-scale pan-cancer data, including The Cancer Genome Atlas and immunotherapy cohorts. The therapeutic value of MHCsig was further explored using 17 CRISPR/Cas9 datasets. MHC-related genes were associated with drug resistance and MHCsig was significantly and positively associated with immunotherapy response and total mutational burden. Remarkably, MHCsig significantly enriched 6% top-ranked genes, which were potential therapeutic targets. Moreover, we generated Hub-MHCsig, which was associated with survival and disease-special survival of pan-cancer, especially low-grade glioma. This result was also confirmed in cell lines and in our own clinical cohort. Later low-grade glioma-related Hub-MHCsig was established and the regulatory network was constructed. We provided conclusive clinical evidence regarding the association between MHCsig and immunotherapy response. We developed MHCsig, which could effectively predict the benefits of immunotherapy for multiple tumors. Further exploration of MHCsig revealed some potential therapeutic targets and regulatory networks.
Subject(s)
Immunotherapy , Machine Learning , Major Histocompatibility Complex , Neoplasms , Single-Cell Analysis , Humans , Immunotherapy/methods , Single-Cell Analysis/methods , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/immunology , Major Histocompatibility Complex/genetics , Sequence Analysis, RNA/methods , Biomarkers, Tumor/genetics , PrognosisABSTRACT
BACKGROUND: Classical Hodgkin lymphoma (cHL) is a highly curable disease, while novel therapy is needed for refractory or relapsed (R/R) patients. This phase II trial aimed to evaluate the role of camrelizumab plus gemcitabine and oxaliplatin (GEMOX) in R/R cHL patients. METHODS: Transplant-eligible patients with R/R cHL were enrolled and received two 14-day cycles of camrelizumab 200 mg intravenously (IV) and two 28-day cycles of camrelizumab 200 mg IV, gemcitabine 1000 mg/m2 IV, and oxaliplatin 100 mg/m2 IV on days 1 and 15. Patients with partial response (PR) or stable disease received an additional cycle of combination therapy. Those who achieved complete response (CR) or PR proceeded to autologous stem cell transplantation (ASCT). The primary endpoint was the CR rate at the end of protocol therapy before ASCT. RESULTS: Forty-two patients were enrolled. At the end of protocol therapy, the objective response rate and CR rate were 94.9% (37/39) and 69.2% (27/39) in the evaluable set, and 88.1% (37/42) and 64.3% (27/42) in the full analysis set, respectively. Twenty-nine patients (69.0%) proceeded to ASCT, and 4 of 5 patients with PR achieved CR after ASCT. After a median follow-up of 20.7 months, the 12-month progression-free survival rate was 96.6% and the 12-month overall survival rate was 100%. Grade 3 or higher treatment emergent adverse events occurred in 28.6% of patients (12/42), mainly hematological toxicity. CONCLUSIONS: Camrelizumab combined with GEMOX constitutes an effective salvage therapy for R/R cHL, proving to be relatively well-tolerated and facilitating ASCT in most patients, thus promoting sustained remission. TRIAL REGISTRATION: ClinicalTrials.gov NCT04239170. Registered on January 1, 2020.
Subject(s)
Antibodies, Monoclonal, Humanized , Hematopoietic Stem Cell Transplantation , Hodgkin Disease , Humans , Hodgkin Disease/drug therapy , Hodgkin Disease/etiology , Hodgkin Disease/pathology , Gemcitabine , Oxaliplatin/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Transplantation, Autologous , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Treatment OutcomeABSTRACT
The shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) severely hinder the scalable application of lithium-sulfurr (Li-S) batteries. Herein, the highly dispersed α-phase molybdenum carbide nano-crystallites embedded in a porous nitrogen-doped carbon framework (α-MoC1-x @NCF) are developed via a simple metal-organic frameworks (MOFs) assisted strategy and proposed as the multifunctional separator interlayer for Li-S batteries. The inlaid MoC1-x nanocrystals and in situ doped nitrogen atoms provide a strong chemisorption and outstanding electrocatalytic conversion toward LiPSs, whereas the unique plum-like carbon framework with hierarchical porosity enables fast electron/Li+ transfer and can physically suppress LiPSs shuttling. Benefiting from the synergistic trapping-catalyzing effect of the MoC1-x @NCF interlayer toward LiPSs, the assembled Li-S battery achieves high discharge capacities (1588.1 mAh g-1 at 0.1 C), impressive rate capability (655.8 mAh g-1 at 4.0 C) and ultra-stable lifespan (a low capacity decay of 0.059% per cycle over 650 cycles at 1.0 C). Even at an elevated sulfur loading (6.0 mg cm-2 ) and lean electrolyte (E/S is ≈5.8 µL mg-1 ), the battery can still achieve a superb areal capacity of 5.2 mAh cm-2 . This work affords an effective design strategy for the construction of muti-functional interlayer in advanced Li-S batteries.
ABSTRACT
Anode-free lithium-metal batteries (AFLMBs) are desirable candidates for achieving high-energy-density batteries, while severe active Li+ loss and uneven Li plating/stripping behavior impede their practical application. Herein, a trilaminar LS-Cu (LiCPON + Si/C-Cu) current collector is fabricated by radio frequency magnetron sputtering, including a Si/C hybrid lithiophilic layer and a supernatant carbon-incorporated lithium phosphorus oxynitride (LiCPON) solid-state electrolyte layer. Joint experimental and computational characterizations and simulations reveal that the LiCPON solid-state electrolyte layer can decompose into an in situ stout ion-transport-promoting protective layer, which can not only regulate homogeneous Li plating/stripping behavior but also inhibit the pulverization and deactivation of Si/C hybrid lithiophilic layer. When combined with surface prelithiated Li1.2Ni0.13Co0.13Mn0.54O2 (Preli-LRM) cathode, the Preli-LRM||LS-Cu full cell delivers 896.1 Wh kg-1 initially and retains 354.1 Wh kg-1 after 50 cycles. This strategy offers an innovative design of compensating for active Li+ loss and inducing uniform Li plating/stripping behavior simultaneously for the development of AFLMBs.
ABSTRACT
Ionic liquids have been widely used to improve the efficiency and stability of perovskite solar cells (PSCs), and are generally believed to passivate defects on the grain boundaries of perovskites. However, few studies have focused on the relevant effects of ionic liquids on intragrain defects in perovskites which have been shown to be critical for the performance of PSCs. In this work, the effect of ionic liquid 1-hexyl-3-methylimidazolium iodide (HMII) on intragrain defects of formamidinium lead iodide (FAPbI3) perovskite is investigated. Abundant {111}c intragrain planar defects in pure FAPbI3 grains are found to be significantly reduced by the addition of the ionic liquid HMII, shown by using ultra-low-dose selected area electron diffraction. As a result, longer charge carrier lifetimes, higher photoluminescence quantum yield, better charge carrier transport properties, lower Urbach energy, and current-voltage hysteresis are achieved, and the champion power conversion efficiency of 24.09% is demonstrated. These observations suggest that ionic liquids significantly improve device performance resulting from the elimination of {111}c intragrain planar defects.
ABSTRACT
Coronavirus (CoV) infections have caused contagious and fatal respiratory diseases in humans worldwide. CoV 3-chymotrypsin-like proteases (3CLpro or Mpro) play an important role in viral maturation, and maintenance of their dimeric conformation is crucial for viral activity. Therefore, allosterically regulated dimerization of 3CLpro can be employed as a drug development target. Here, we investigated the allosteric regulatory mechanism of 3CLpro dimerization by using hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) technology. We found that the FLAG tag directly coupled to the N-finger of 3CLpro significantly increased HDX kinetics at the dimer interface, and 3CLpro transformed from a dimer to a monomer. The 3CLpro mutants of SARS-CoV-2, which are monomeric, also exhibited increased deuterium exchange. Binding of the allosteric inhibitor Gastrodenol to most betacoronavirus 3CLpros led to increased allosteric deuterium exchange, resulting in the monomeric conformation of the CoV 3CLpro upon binding. Molecular dynamics (MD) simulation analysis further indicated the molecular mechanism of action of Gastrodenol on CoV 3CLpro: binding of Gastrodenol to SARS-CoV-2 3CLpro destroyed the hydrogen bond in the dimer interface. These results suggest that Gastrodenol may be a potential broad-spectrum anti-betacoronavirus drug.