Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters

Publication year range
1.
Gels ; 8(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35621605

ABSTRACT

The problem of wellbore stability has a marked impact on oil and gas exploration and development in the process of drilling. Marine mussel proteins can adhere and encapsulate firmly on deep-water rocks, providing inspiration for solving borehole stability problem and this ability comes from catechol groups. In this paper, a novel biopolymer was synthesized with chitosan and catechol (named "SDGB") by Schiff base-reduction reaction, was developed as an encapsulator in water-based drilling fluids (WBDF). In addition, the chemical enhancing wellbore stability performance of different encapsulators were investigated and compared. The results showed that there were aromatic ring structure, amines, and catechol groups in catechol-chitosan biopolymer molecule. The high shale recovery rate demonstrated its strong shale inhibition performance. The rock treated by catechol-chitosan biopolymer had higher tension shear strength and uniaxial compression strength than others, which indicates that it can effectively strengthen the rock and bind loose minerals in micro-pore and micro-fracture of rock samples. The rheological and filtration property of the WBDF containing catechol-chitosan biopolymer is stable before and after 130 °C/16 h hot rolling, demonstrating its good compatibility with other WBDF agents. Moreover, SDGB could chelate with metal ions, forming a stable covalent bond, which plays an important role in adhesiveness, inhibition, and blockage.

2.
Gels ; 8(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35621620

ABSTRACT

Filtration loss control under high-temperature conditions is a worldwide issue among water-based drilling fluids (WBDFs). A core-shell high-temperature filter reducer (PAASM-CaCO3) that combines organic macromolecules with inorganic nanomaterials was developed by combining acrylamide (AM), 2-acrylamide-2-methylpropane sulfonic acid (AMPS), styrene (St), and maleic anhydride (MA) as monomers and nano-calcium carbonate (NCC). The molecular structure of PAASM-CaCO3 was characterized. The average molecular weight of the organic part was 6.98 × 105 and the thermal decomposition temperature was about 300 °C. PAASM-CaCO3 had a better high-temperature resistance. The rheological properties and filtration performance of drilling fluids treated with PAASM-CaCO3 were stable before and after aging at 200 °C/16 h, and the effect of filtration control was better than that of commonly used filter reducers. PAASM-CaCO3 improved colloidal stability and mud cake quality at high temperatures.

3.
ACS Omega ; 7(32): 27787-27797, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990490

ABSTRACT

Aiming at the challenge that environmental protection and high-temperature fluid loss reduction performance of the traditional water-based drilling fluid treatment agent are difficult to balance, our studies added psyllium husk as a high-temperature-resistant and environmentally friendly filtrate reducer to a water-based drilling fluid. The composition, physical and chemical properties, and microstructure of psyllium husk are characterized. Then, the effects of psyllium husk after hot rolling at different temperatures on the rheological properties and fluid loss properties of bentonite-based slurry are evaluated. The results show that the psyllium husk added to the bentonite-based slurry can effectively improve the rheological properties and fluid loss properties of the bentonite-based slurry, and the temperature resistance can reach 160 °C. After hot rolling at 160 °C, adding 1 w/v % psyllium husk can reduce the API fluid loss and high-temperature and high-pressure fluid loss of the bentonite-based slurry by 76.04 and 56.91%, respectively, showing excellent fluid loss reduction performance at high temperatures. The branched structure and uronic acid of psyllium husk can inhibit the degradation of its own molecular structure to a certain extent, which is the fundamental reason why psyllium husk still has excellent fluid loss reduction performance at high temperatures. Psyllium husk is expected to replace some traditional synthetic polymers and be used in environmentally friendly high-temperature-resistant water-based drilling fluids.

4.
ACS Omega ; 6(2): 1436-1444, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33490803

ABSTRACT

The development of offshore oil and gas requires environmental protection during the drilling process. However, the existing drilling fluid additives cannot form an efficient environmentally friendly drilling fluid system. At the same time, some environmentally friendly drilling fluid additives cannot be widely used due to their high cost and complicated production process. In this paper, a natural material named wild jujube pit powder (WJPP) was used to improve the performance of the drilling fluid for the first time. The viscosity, shear force, shear thinning, rheology, filtration loss, and lubrication properties of the drilling fluid are discussed. By means of microstructure analysis, infrared spectroscopy, thermogravimetric analysis, and particle size analysis, the properties of WJPP and the drilling fluid system containing WJPP (i.e., rheological property, lubrication property, and filtration loss property) were studied. The results show that the microscopic appearance of WJPP was spherical, fibrous, block, and flake, the thermal decomposition temperature was 273.9 °C, and the suspension of WJPP was slightly acidic. WJPP can increase the viscosity, reduce the filtration loss, enhance the shear thinning and thixotropy, and reduce the lubrication coefficient of the drilling fluid. With the decrease in the particle size of WJPP, the shear thinning and thixotropy of the drilling fluid are enhanced, the viscosity and shear force increased, and the filtration loss and lubrication coefficient decreased. With the increase in the dosage, the shear thinning of the drilling fluid was enhanced, the filtration loss and coefficient of friction decreased, the viscosity and shear force increased, while the thixotropy did not change significantly. The microstructure test of mud cake showed that WJPP could form a grid structure. Combined with the blocking action of particles, the structure could prevent water molecules from passing through to reduce the filtration loss. WJPP can improve the rheological property, filtration property, and friction property of the drilling fluid, which has certain application prospects.

5.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34578687

ABSTRACT

Inhibiting hydrate decomposition due to the friction heat generated by the drilling tools is one of the key factors for drilling hydrate formation. Since the existing method based on chemical inhibition technology can only delay the hydrate decomposition rate, a phase-change microcapsule was introduced in this paper to inhibit, by the intelligent control of the drilling fluid temperature, the decomposition of the formation hydrate, which was microencapsulated by modified n-alkane as the core material, and nano-silica was taken as the shell material. Scanning electron microscope (SEM), size distribution, X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FT-IR) were utilized to characterize the structural properties of microcapsules. Differential scanning calorimetry (DSC) spectra displayed that the latent heat was 136.8 J/g in the case of melting enthalpy and 136.4 J/g in the case of solidification enthalpy, with an encapsulation efficiency of 62.6%. In addition, the prepared microcapsules also showed good thermal conductivity and reliability. By comparison, it was also proved that the microcapsules had good compatibility with drilling fluid, which can effectively control the temperature of drilling fluid for the inhibition of hydrate decomposition.

6.
RSC Adv ; 10(22): 12953-12961, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-35492098

ABSTRACT

Solvent extraction is commonly used to separate mixtures of hydrocarbons and their derivatives, and solvent choice is strongly influenced by the affinity to the target component, cost and safety. Nitrogen-containing switchable solvents can switch from water-immiscible form to water-miscible bicarbonate salts when CO2 is injected and back to water-immiscible form when N2 is injected. Switchable solvents, as a type of recyclable green solvent, can be used not only to separate such mixtures but also to reduce process costs. Herein, four switchable solvents, namely, dipropylamine, di-sec-butylamine, N,N-dimethylcyclohexylamine (CyNMe2), and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA), were employed to separate benzene/cyclohexane, ethyl acetate/acetonitrile, and ethyl acetate/n-heptane mixtures, and the corresponding partition and selectivity coefficients were determined. In all cases, separation selectivity increased in the order of dipropylamine < di-sec-butylamine < CyNMe2 < TEPDA, i.e., TEPDA was best suited for the separation of hydrocarbons and their derivatives. In addition, cycling experiments revealed that the TEPDA can be re-used at least 15 times and was well suited for industrial applications. In the end, the mechanism of the separation was put forward.

7.
Carbohydr Polym ; 249: 116833, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32933677

ABSTRACT

Controlling the filtration of water-based drilling fluid effectively in high temperature environment is a great challenge in drilling engineering. In this study, ß-cyclodextrin polymer microspheres (ß-CDPMs) were synthesized by crosslinking between ß-cyclodextrin and epichlorohydrin via inverse emulsion polymerization and employed as filtration reducers. The standard American Petroleum Institute filtration test showed that the ß-CDPMs can only perform the enhanced filtration control ability at temperatures above 160 °C, and can tolerate the temperature resistance up to 240 °C without significant influence of rheology. As the thermal aging temperature is above 160 °C, numerous nano carbon spheres and nanostructured composites generated due to the occurrence of hydrothermal reaction. These high temperature stable nanoparticles bridged across the nano sized gaps and participated into forming dense filter cake, contributing to excellent filtration control. The filtration control mechanism proposed in this study opened a novel avenue for high temperature filtration control in water-based drilling fluids.

8.
RSC Adv ; 10(18): 10471-10481, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-35492931

ABSTRACT

This paper is concerned with the formation of bitumen during the drilling of the H oilfield in Iraq. The high viscosity and strong adhesion properties of bitumen can influence the drilling operations. Some complex problems include paste screening, and drill pipe sticking, which cause huge economic losses. Therefore, it is necessary to effectively reduce the bitumen viscosity. The contribution of a single subcomponent of bitumen to the viscosity can vary, and the combined effect of different components of bitumen on the viscosity remains unclear. Furthermore, the mechanism of viscosity reduction remains unclear. In this study, the effects of organic solvents on the viscosity of bitumen were studied, and toluene was selected as the best organic solvent. The results showed that aromatics/resins, aromatics/asphaltenes, and resin/asphaltenes can help increase the bitumen viscosity. Novel methods, including the use of nanoparticles, ethyl cellulose, and the quaternary ammonium salt of heptadecenyl hydroxyethyl imidazoline (QASHI), were proposed to decrease the viscosity. TiO2 and CuO nanoparticles were chosen, and the main factors influencing the viscosity, such as the particle type, concentration, particle size, temperature, and shear rate, were analysed. The results show that the bitumen viscosity decreases with the increase in the concentrations of ethyl cellulose and QASHI. A synergistic effect between ethyl cellulose and QASHI was found with an optimal concentrations of ethyl cellulose and QASHI (1000 and 1600 mg L-1). A synergistic effect was also observed when nanoparticles, ethyl cellulose, and QASHI were used in combination. This paper reports the micro-mechanism whereby the viscosity of bitumen is decreased.

9.
Materials (Basel) ; 12(17)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438495

ABSTRACT

Since 2007, heterogeneous, high-viscosity active bituminous formations have often occurred during the drilling process in Yadavaran oilfield (Iran), Halfaya oilfield (Iraq), and tar sands (Canada). The formation of bitumen exhibits plastic and creep properties, and its adhesion is strong, so drilling accidents are easily caused, such as adhering vibrating screen, drill pipe sticking, lost circulation, and even well abandonment. These complex problems cause huge economic losses. Solvents used to dissolve bitumen are a feasible technology to remove bitumen effectively. In order to solve this problem, we used crude bitumen samples from Halfaya oilfield to study the relation between the bitumen component and different solvents. In this study, the temperature, crude bitumen sample to solvent ratio, stirring rate, stirring time, and ultrasound time on bitumen recovery by toluene were investigated by a single factor experiment. The optimum process parameter for bitumen recovery was obtained. Toluene, n-heptane, tetrahydrofuran, cyclohexane, cyclopentane, ethyl acetate, and n-pentane were chosen as the solvents for single solvent extraction and composite solvent extraction. The bitumen recovery increased significantly with the use of a composite solvent compared to a single solvent. The composite solvent ratio was 1:1. The highest bitumen recovery was 98.9 wt% by toluene/cyclohexane composite solvent. The SARA (saturates, aromatics, resins, and asphaltenes) components of the bitumen were analyzed. The toluene showed the highest asphaltene content, while the n-alkanes showed the lowest asphaltene content. The higher the asphaltene content, the higher the bitumen recovery. The composite solvent obtained the highest asphaltene content and bitumen recovery. The viscosity of bitumen extraction by different solvents was measured. The lower the bitumen viscosity, the higher the bitumen recovery. The element analysis indicated the solvent's ability to extract bitumen colloids with the C/H ratio. This study provides a reliable theoretical basis for the subsequent adoption of effective anti-bitumen polluted drilling fluid additives.

10.
Materials (Basel) ; 11(10)2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30340355

ABSTRACT

In order to mitigate the loss circulation of oil-based drilling fluids (OBDFs), an oil-absorbent polymer (OAP) composed by methylmethacrylate (MMA), butyl acrylate (BA), and hexadecyl methacrylate (HMA) was synthesized by suspension polymerization and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electronic microscopy (SEM). The oil-absorptive capacity of OAP under different solvents was measured as the function of temperature and time. The effect of the OAP on the rheological and filtration properties of OBDFs was initially evaluated, and then the sealing property of OAP particles as lost circulation materials (LCMs) was examined by a high-temperature and high-pressure (HTHP) filtration test, a sand bed filtration test, a permeable plugging test, and a fracture sealing testing. The test results indicated that the addition of OAP had relatively little influence on the rheological properties of OBDF at content lower than 1.5 w/v % but increased the fluid viscosity remarkably at content higher than 3 w/v %. It could reduce the HTHP filtration and improve the sealing capacity of OBDF significantly. In the sealing treatment, after addition into the OBDF, the OAP particles could absorb oil accompanied with volume enlargement, which led to the increase of the fluid viscosity and slowing down of the fluid loss speed. The swelled and deformable OAP particles could be squeezed into the micro-fractures with self-adoption and seal the loss channel. More important, fluid loss was dramatically reduced when OAP particles were combined with other conventional LCMs by a synergistic effect.

11.
RSC Adv ; 8(37): 20852-20861, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-35542322

ABSTRACT

Interest in using nanomaterials to improve shale stability during drilling operations has been increasing. Herein, a polymer microsphere emulsion (PME) as a high-performance shale stabilizer for water-based drilling fluids (WDFs) was prepared via emulsion polymerization. The particle sizes in PME in aqueous solution ranged from 90 to 320 nm. PME was found to exhibit excellent salt tolerance and temperature resistance. The plugging performance of PME was tested through pressure transmission tests. The results indicated that the polymer microspheres in PME could effectively plug shale pores and reduce shale permeability. In addition, rolling recovery tests were used to evaluate the shale hydration inhibition performance of PME. It was found that PME showed great performance for decreasing shale hydration potential. These factors make PME a promising shale stabilizer for WDFs used to drill shale formations.

12.
Pet Sci ; 14(1): 116-125, 2017.
Article in English | MEDLINE | ID: mdl-28239393

ABSTRACT

Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcohol-water medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive monomer N-isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA-St) nanospheres at 80 °C, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD-SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability.

SELECTION OF CITATIONS
SEARCH DETAIL