Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Biotechnol Lett ; 45(9): 1147-1157, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37341820

ABSTRACT

PURPOSE: Docosahexaenoic acid (DHA) is an important omega-3 unsaturated fatty acid and has been widely applied in medicine, food additives, and feed ingredients. The fermentative production of DHA using microorganisms, including Schizochytrium sp., attracted much attention due to its high production efficiency and environment friendly properties. An efficient laboratory evolution approach was used to improve the strain's performance in this study. METHODS: A multi-pronged laboratory evolution approach was applied to evolve high-yield DHA-producing Schizochytrium strain. We further employed comparative transcriptional analysis to identify transcriptional changes between the screened strain HS01 and its parent strain GS00. RESULTS: After multiple generations of ALE, a strain HS01 with higher DHA content and lower saturated fatty acids content was obtained. Low nitrogen conditions were important for enhancing DHA biosynthesis in HS01. The comparative transcriptional analysis results indicated that during the fermentation process of HS01, the expression of key enzymes in the glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle were up-regulated, while the expression of polyketide synthase genes and fatty acid synthesis genes were similar to those in GS00. CONCLUSION: The results suggest that the improved DHA production capacity of HS01 is not due to enhancement of the DHA biosynthesis pathway, but rather related to modulation of central metabolism pathways.


Subject(s)
Docosahexaenoic Acids , Stramenopiles , Stramenopiles/classification , Stramenopiles/genetics , Stramenopiles/metabolism , Docosahexaenoic Acids/biosynthesis , Fatty Acids/biosynthesis , Directed Molecular Evolution , Sequence Analysis, RNA , Gene Expression Profiling
2.
Bioprocess Biosyst Eng ; 43(2): 357, 2020 02.
Article in English | MEDLINE | ID: mdl-31903503

ABSTRACT

The original version of the article unfortunately contained an error in Microalgae strain and culture medium section. Below is the corrected version.

3.
Bioprocess Biosyst Eng ; 43(2): 347-355, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31606754

ABSTRACT

Porphyridium purpureum is a rich source for producing phycoerythrin (PE); however, the PE content is greatly affected by culture conditions. Researchers have aimed to optimize the cultivation of P. purpureum for accumulation of PE. When traditional optimized culture conditions were used to cultivate P. purpureum, high PE contents were not usually achieved. In this study, an induced cultivation pattern was applied to P. purpureum for PE biosynthesis (i.e., an incremental approach by altering temperatures, light intensities, and nitrate concentrations). Results revealed that the induced pattern greatly improved the PE biosynthesis. The optimized PE content of 229 mg/L was achieved on the 12th cultivation day, which was a maximum PE content within one cultivation period and accounted for approximately 3.05% of the dry biomass. The induced cultivation pattern was highly suitable for PE synthesis in P. purpureum, which provided an important reference value to the large-scale production of PE.


Subject(s)
Biomass , Light , Phycoerythrin , Porphyridium/growth & development , Phycoerythrin/biosynthesis , Phycoerythrin/chemistry , Phycoerythrin/isolation & purification
4.
Article in English | MEDLINE | ID: mdl-32411679

ABSTRACT

Genetic manipulations including chromosome engineering are essential techniques used to restructure cell metabolism. Lambda/Red (λ/Red)-mediated recombination is the most commonly applied approach for chromosomal modulation in Escherichia coli. However, the efficiency of this method is significantly hampered by the laborious removal of the selectable markers. To overcome the problem, the integration helper plasmid was constructed, pSBC1a-CtR, which contains Red recombinase, Cre recombinase, and exogenous orthogonal aminoacyl-transfer RNA (tRNA) synthetase/tRNA pairs, allows an unnatural amino acid (UAA) to be genetically encoded at the defined site of the antibiotic resistance gene-encoded protein. When UAAs are not in the culture medium, there was no expression in the antibiotic resistance gene-encoded protein. Accordingly, the next procedure of antibiotic gene excising is not needed. To verify this method, poxB gene was knocked out successfully. Furthermore, sequential deletion of three target genes (galR, ptsG, and pgi) was able to generate neurosporene-producing strain marked by high growth rate. Thus, the site-specific incorporation UAA mutagenesis system were used to control and expand the use of conditional selectable marker, and the technique is used to facilitate a rapid continuous genome editing in Escherichia coli.

SELECTION OF CITATIONS
SEARCH DETAIL