Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Arch Biochem Biophys ; 721: 109190, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35331713

ABSTRACT

BACKGROUND: Excessive oxidative stress of the inner ear as a result of high, intense noise exposure is regarded as a major mechanism underlying the development of noise-induced hearing loss (NIHL). The present study was designed to explore the effect and mechanism of activated transcription factor 3 (ATF3) in reduction/oxidation homeostasis of NIHL. METHOD: In vitro and in vivo assays were performed to investigate the functional role of ATF3 in the inner ear. Mice hearing was measured using auditory brainstem response. ATF3 short hairpin RNA (shRNA) was transfected into House Ear Institute-Organ of Corti 1 (HEI-OC1) cells to decrease ATF3 expression. Western blotting and quantitative real-time polymerase chain reaction (RT-qPCR) were performed to quantify ATF3, NRF2, HO-1 and NQO1 expression. Glutathione (GSH) assay was performed to detect intracellular GSH levels. ATF3 immunofluorescence analysis was carried out in cochlear cryosectioned samples and HEI-OC1 cells to localize ATF3 expression. Cell counting kit 8 assay and flow cytometry were performed to analyze cell viability. RESULT: ATF3 was upregulated in noise-exposed cochleae and HEI-OC1 cells treated with H2O2. NRF2 is a key factor regulated by ATF3. NRF2, HO-1, NQO1, and GSH expression was significantly downregulated in shATF3 HEI-OC1 cells. ATF3 silencing promoted reactive oxygen species accumulation and increased apoptosis and necrosis with H2O2 stimulus. CONCLUSION: ATF3 functions as an antioxidative factor by activating the NRF2/HO-1 pathway.


Subject(s)
Activating Transcription Factor 3 , Hearing Loss, Noise-Induced , NF-E2-Related Factor 2 , Activating Transcription Factor 3/metabolism , Animals , Apoptosis , Disease Models, Animal , Heme Oxygenase-1 , Hydrogen Peroxide/pharmacology , Membrane Proteins , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction
2.
Am J Sports Med ; 51(7): 1752-1764, 2023 06.
Article in English | MEDLINE | ID: mdl-37103335

ABSTRACT

BACKGROUND: Mechanical loading and alendronate (ALN) can be used as noninvasive physical therapy methods for osteoarthritis (OA). However, the timing and efficacy for treatments are unknown. PURPOSE: To determine whether the timing of mechanical loading and ALN influences the pathobiological changes of OA. STUDY DESIGN: Controlled laboratory study. METHODS: Mice with OA induced by anterior cruciate ligament transection were subjected to early (1-3 weeks) or late (5-7 weeks) axial compressive dynamic load or intraperitoneal injection of ALN. Changes in gait were analyzed using gait analysis system, pathobiological changes in subchondral bone, cartilage, osteophyte, and synovitis were assessed using micro-computed tomography, tartrate-resistant acid phosphatase staining, pathologic section staining, and immunohistochemistry at 1, 2, 4, and 8 weeks. RESULTS: At 1, 2, and 4 weeks, the OA limb had lower mean footprint pressure intensity, lower bone volume per tissue volume (BV/TV) in the subchondral bone, and more osteoclasts. At 4 weeks, the early loading, ALN, and load + ALN treatments induced less cartilage destruction, with a corresponding reduction in Osteoarthritis Research Society International score and increased hyaline cartilage thickness. The treatments also resulted in fewer osteoclasts and higher BV/TV and bone mineral density of subchondral bone and suppressed inflammation and interleukin 1ß- and tumor necrosis factor α-positive cells in synovium. At 8 weeks, early loading or load + ALN improved the mean footprint pressure intensity and knee flexion. At 8 weeks, early load + ALN had a synergistic effect on protecting hyaline cartilage and proteoglycans. Footprint pressure intensity and cartilage destruction were worse in late loading limbs, and no differences in BV/TV, bone mineral density, osteophyte formation, and synovium inflammation were found between the late load, ALN, and load + ALN groups and the anterior cruciate ligament transection group. CONCLUSION: Dynamic axial mechanical loading or ALN in the early stages of knee trauma protected against OA by suppressing subchondral bone remodeling. However, late loading promoted cartilage degeneration in advanced OA, indicating that reduced loading should be performed in the late stages of OA to avoid the acceleration of OA. CLINICAL RELEVANCE: Early low-level functional exercise or antiosteoporotic drugs could clearly slow or prevent the progression of early OA. For patients with mild to severe OA, loading reduction via brace protection or maintenance of joint stability via early ligament reconstruction surgery may ameliorate OA exacerbation.


Subject(s)
Cartilage, Articular , Osteoarthritis , Osteophyte , Mice , Animals , Osteophyte/pathology , X-Ray Microtomography , Cartilage, Articular/pathology , Osteoarthritis/pathology , Alendronate/pharmacology , Alendronate/therapeutic use , Bone Remodeling , Inflammation/pathology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL