Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.071
Filter
1.
Cell ; 184(17): 4380-4391.e14, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34147139

ABSTRACT

Despite the discovery of animal coronaviruses related to SARS-CoV-2, the evolutionary origins of this virus are elusive. We describe a meta-transcriptomic study of 411 bat samples collected from a small geographical region in Yunnan province, China, between May 2019 and November 2020. We identified 24 full-length coronavirus genomes, including four novel SARS-CoV-2-related and three SARS-CoV-related viruses. Rhinolophus pusillus virus RpYN06 was the closest relative of SARS-CoV-2 in most of the genome, although it possessed a more divergent spike gene. The other three SARS-CoV-2-related coronaviruses carried a genetically distinct spike gene that could weakly bind to the hACE2 receptor in vitro. Ecological modeling predicted the co-existence of up to 23 Rhinolophus bat species, with the largest contiguous hotspots extending from South Laos and Vietnam to southern China. Our study highlights the remarkable diversity of bat coronaviruses at the local scale, including close relatives of both SARS-CoV-2 and SARS-CoV.


Subject(s)
COVID-19/virology , Chiroptera/virology , Coronavirus/genetics , Evolution, Molecular , SARS-CoV-2/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Asia, Southeastern , China , Coronavirus/classification , Coronavirus/isolation & purification , Ecological and Environmental Phenomena , Genome, Viral , Humans , Models, Molecular , Phylogeny , SARS-CoV-2/physiology , Sequence Alignment , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Zoonoses
2.
Immunity ; 55(7): 1185-1199.e8, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35738281

ABSTRACT

Lipoprotein disorder is a common feature of chronic pancreatitis (CP); however, the relationship between lipoprotein disorder and pancreatic fibrotic environment is unclear. Here, we investigated the occurrence and mechanism of pancreatic stellate cell (PSC) activation by lipoprotein metabolites and the subsequent regulation of type 2 immune responses, as well as the driving force of fibrotic aggressiveness in CP. Single-cell RNA sequencing revealed the heterogeneity of PSCs and identified very-low-density lipoprotein receptor (VLDLR)+ PSCs that were characterized by a higher lipid metabolism. VLDLR promoted intracellular lipid accumulation, followed by interleukin-33 (IL-33) expression and release in PSCs. PSC-derived IL-33 strongly induced pancreatic group 2 innate lymphoid cells (ILC2s) to trigger a type 2 immune response accompanied by the activation of PSCs, eventually leading to fibrosis during pancreatitis. Our findings indicate that VLDLR-enhanced lipoprotein metabolism in PSCs promotes pancreatic fibrosis and highlight a dominant role of IL-33 in this pro-fibrotic cascade.


Subject(s)
Pancreatic Stellate Cells , Pancreatitis, Chronic , Receptors, LDL/metabolism , Cells, Cultured , Fibrosis , Humans , Immunity, Innate , Interleukin-33/metabolism , Lipid Metabolism , Lipoproteins, VLDL/metabolism , Lymphocytes/metabolism , Pancreas/pathology , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology
3.
Immunity ; 53(5): 1108-1122.e5, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33128875

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis. However, little is known about the pathogenesis and biomarkers of COVID-19. Here, we profiled host responses to COVID-19 by performing plasma proteomics of a cohort of COVID-19 patients, including non-survivors and survivors recovered from mild or severe symptoms, and uncovered numerous COVID-19-associated alterations of plasma proteins. We developed a machine-learning-based pipeline to identify 11 proteins as biomarkers and a set of biomarker combinations, which were validated by an independent cohort and accurately distinguished and predicted COVID-19 outcomes. Some of the biomarkers were further validated by enzyme-linked immunosorbent assay (ELISA) using a larger cohort. These markedly altered proteins, including the biomarkers, mediate pathophysiological pathways, such as immune or inflammatory responses, platelet degranulation and coagulation, and metabolism, that likely contribute to the pathogenesis. Our findings provide valuable knowledge about COVID-19 biomarkers and shed light on the pathogenesis and potential therapeutic targets of COVID-19.


Subject(s)
Coronavirus Infections/blood , Coronavirus Infections/pathology , Plasma/metabolism , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Adult , Aged , Aged, 80 and over , Betacoronavirus , Biomarkers/blood , Blood Proteins/metabolism , COVID-19 , Coronavirus Infections/classification , Coronavirus Infections/metabolism , Female , Humans , Machine Learning , Male , Middle Aged , Pandemics/classification , Pneumonia, Viral/classification , Pneumonia, Viral/metabolism , Proteomics , Reproducibility of Results , SARS-CoV-2
4.
Immunity ; 53(1): 204-216.e10, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32553276

ABSTRACT

Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-ß and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.


Subject(s)
Dendritic Cells/immunology , Keratinocytes/metabolism , Phosphoprotein Phosphatases/deficiency , Polyamines/metabolism , Psoriasis/pathology , RNA/immunology , 3T3 Cells , Animals , Arginase/antagonists & inhibitors , Arginase/metabolism , Arginine/metabolism , Autoantigens/immunology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Disease Models, Animal , HEK293 Cells , HaCaT Cells , Humans , Interleukin-17/metabolism , Macaca fascicularis , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Phosphoprotein Phosphatases/genetics , Phosphorylation , Skin/pathology , Toll-Like Receptor 7/immunology
5.
Nat Chem Biol ; 20(6): 699-709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38212578

ABSTRACT

Ferroptosis is iron-dependent oxidative cell death. Labile iron and polyunsaturated fatty acid (PUFA)-containing lipids are two critical factors for ferroptosis execution. Many processes regulating iron homeostasis and lipid synthesis are critically involved in ferroptosis. However, it remains unclear whether biological processes other than iron homeostasis and lipid synthesis are associated with ferroptosis. Using kinase inhibitor library screening, we discovered a small molecule named CGI1746 that potently blocks ferroptosis. Further studies demonstrate that CGI1746 acts through sigma-1 receptor (σ1R), a chaperone primarily located at mitochondria-associated membranes (MAMs), to inhibit ferroptosis. Suppression of σ1R protects mice from cisplatin-induced acute kidney injury hallmarked by ferroptosis. Mechanistically, CGI1746 treatment or genetic disruption of MAMs leads to defective Ca2+ transfer, mitochondrial reactive oxygen species (ROS) production and PUFA-containing triacylglycerol accumulation. Therefore, we propose a critical role for MAMs in ferroptosis execution.


Subject(s)
Ferroptosis , Reactive Oxygen Species , Receptors, sigma , Sigma-1 Receptor , Ferroptosis/drug effects , Receptors, sigma/metabolism , Animals , Mice , Humans , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/drug effects , Mice, Inbred C57BL , Mitochondria Associated Membranes
6.
PLoS Biol ; 21(8): e3002251, 2023 08.
Article in English | MEDLINE | ID: mdl-37607211

ABSTRACT

Modern advances in DNA sequencing hold the promise of facilitating descriptions of new organisms at ever finer precision but have come with challenges as the major Codes of bionomenclature contain poorly defined requirements for species and subspecies diagnoses (henceforth, species diagnoses), which is particularly problematic for DNA-based taxonomy. We, the commissioners of the International Commission on Zoological Nomenclature, advocate a tightening of the definition of "species diagnosis" in future editions of Codes of bionomenclature, for example, through the introduction of requirements for specific information on the character states of differentiating traits in comparison with similar species. Such new provisions would enhance taxonomic standards and ensure that all diagnoses, including DNA-based ones, contain adequate taxonomic context. Our recommendations are intended to spur discussion among biologists, as broad community consensus is critical ahead of the implementation of new editions of the International Code of Zoological Nomenclature and other Codes of bionomenclature.


Subject(s)
DNA , DNA/genetics , Phenotype , Sequence Analysis, DNA
7.
EMBO Rep ; 25(3): 1208-1232, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38291338

ABSTRACT

Micropeptides encoded by short open reading frames (sORFs) within long noncoding RNAs (lncRNAs) are beginning to be discovered and characterized as regulators of biological and pathological processes. Here, we find that lncRNA Dleu2 encodes a 17-amino-acid micropeptide, which we name Dleu2-17aa, that is abundantly expressed in T cells. Dleu2-17aa promotes inducible regulatory T (iTreg) cell generation by interacting with SMAD Family Member 3 (Smad3) and enhancing its binding to the Foxp3 conserved non-coding DNA sequence 1 (CNS1) region. Importantly, the genetic deletion of Dleu2-17aa in mice by start codon mutation impairs iTreg generation and worsens experimental autoimmune encephalomyelitis (EAE). Conversely, the exogenous supplementation of Dleu2-17aa relieves EAE. Our findings demonstrate an indispensable role of Dleu2-17aa in maintaining immune homeostasis and suggest therapeutic applications for this peptide in treating autoimmune diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , RNA, Long Noncoding , Animals , Mice , Autoimmunity , Peptides/metabolism , RNA, Long Noncoding/genetics , T-Lymphocytes, Regulatory/metabolism
8.
PLoS Pathog ; 19(3): e1011227, 2023 03.
Article in English | MEDLINE | ID: mdl-36913374

ABSTRACT

GntR transcription factor of Streptococcus suis serotype 2 (SS2) is a potential substrate protein of STK, but the regulation mechanisms of GntR phosphorylation are still unclear. This study confirmed that STK phosphorylated GntR in vivo, and in vitro phosphorylation experiments showed that STK phosphorylated GntR at Ser-41. The phosphomimetic strain (GntR-S41E) had significantly reduced lethality in mice and reduced bacterial load in the blood, lung, liver, spleen, and brain of infected mice compared to wild-type (WT) SS2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments demonstrated that the promoter of nox was bound by GntR. The phosphomimetic protein GntR-S41E cannot bind to the promoter of nox, and the nox transcription levels were significantly reduced in the GntR-S41E mutant compared to WT SS2. The virulence in mice and the ability to resist oxidative stress of the GntR-S41E strain were restored by complementing transcript levels of nox. NOX is an NADH oxidase that catalyzes the oxidation of NADH to NAD+ with the reduction of oxygen to water. We found that NADH is likely accumulated under oxidative stress in the GntR-S41E strain, and higher NADH levels resulted in increased amplified ROS killing. In total, we report GntR phosphorylation could inhibit the transcription of nox, which impaired the ability of SS2 to resist oxidative stress and virulence.


Subject(s)
Streptococcal Infections , Streptococcus suis , Animals , Mice , Virulence , Streptococcus suis/genetics , Phosphorylation , NAD/metabolism , Oxidative Stress , Streptococcal Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
Am J Pathol ; 194(1): 85-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918798

ABSTRACT

Sleep deficiency is associated with intestinal inflammatory conditions and is increasingly recognized as a public health concern worldwide. However, the effects of sleep deficiency on intestinal goblet cells (GCs), which play a major role in intestinal barrier formation, remain elusive. Herein, the effects of sleep deprivation on intestinal GCs were determined using a sleep-deprivation mouse model. Sleep deprivation impaired the intestinal mucosal barrier and decreased the expression of tight junction proteins. According to single-cell RNA sequencing and histologic assessments, sleep deprivation significantly reduced GC numbers and mucin protein levels in intestinal tissues. Furthermore, sleep deprivation initiated endoplasmic reticulum stress by activating transcription factor 6 and binding Ig protein. Treatment with melatonin, an endoplasmic reticulum stress regulator, significantly alleviated endoplasmic reticulum stress responses in intestinal GCs. In addition, melatonin increased the villus length, reduced the crypt depth, and restored intestinal barrier function in mice with sleep deprivation. Overall, the findings revealed that sleep deprivation could impair intestinal mucosal barrier integrity and GC function. Targeting endoplasmic reticulum stress could represent an ideal strategy for treating sleep deficiency-induced gastrointestinal disorders.


Subject(s)
Intestinal Diseases , Melatonin , Mice , Animals , Goblet Cells/metabolism , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Sleep Deprivation/pathology , Melatonin/metabolism , Melatonin/pharmacology , Intestinal Mucosa/metabolism , Intestinal Diseases/metabolism , Endoplasmic Reticulum Stress
10.
Chem Rev ; 123(9): 5347-5420, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37043332

ABSTRACT

Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.


Subject(s)
Biomimetics , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Catalysis , Porosity , Catalytic Domain
11.
J Pathol ; 262(4): 427-440, 2024 04.
Article in English | MEDLINE | ID: mdl-38229567

ABSTRACT

Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Cerebellar Neoplasms , Fanconi Anemia , Ferroptosis , Medulloblastoma , Mice , Animals , Humans , Medulloblastoma/genetics , Medulloblastoma/radiotherapy , Ferroptosis/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/radiotherapy , Cell Line, Tumor , Fanconi Anemia Complementation Group D2 Protein/genetics
12.
Mol Ther ; 32(3): 766-782, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38273656

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lethal disease in the absence of demonstrated efficacy for preventing progression. Although macrophage-mediated alveolitis is determined to participate in myofibrotic transition during disease development, the paradigm of continuous macrophage polarization is still under-explored due to lack of proper animal models. Here, by integrating 2.5 U/kg intratracheal Bleomycin administration and 10 Gy thorax irradiation at day 7, we generated a murine model with continuous alveolitis-mediated fibrosis, which mimics most of the clinical features of our involved IPF patients. In combination with data from scRNA-seq of patients and a murine IPF model, a decisive role of CCL2/CCR2 axis in driving M1 macrophage polarization was revealed, and M1 macrophage was further confirmed to boost alveolitis in leading myofibroblast activation. Multiple sticky-end tetrahedral framework nucleic acids conjunct with quadruple ccr2-siRNA (FNA-siCCR2) was synthesized in targeting M1 macrophages. FNA-siCCR2 successfully blocked macrophage accumulation in pulmonary parenchyma of the IPF murine model, thus preventing myofibroblast activation and leading to the disease remitting. Overall, our studies lay the groundwork to develop a novel IPF murine model, reveal M1 macrophages as potential therapeutic targets, and establish new treatment strategy by using FNA-siCCR2, which are highly relevant to clinical scenarios and translational research in the field of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophages , Humans , Mice , Animals , Disease Models, Animal , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Fibrosis , DNA , Bleomycin
13.
J Cell Physiol ; 239(1): 79-96, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942585

ABSTRACT

Radiation-induced heart damage caused by low-dose X-rays has a significant impact on tumour patients' prognosis, with cardiac hypertrophy being the most severe noncarcinogenic adverse effect. Our previous study demonstrated that mitophagy activation promoted cardiac hypertrophy, but the underlying mechanisms remained unclear. In the present study, PARL-IN-1 enhanced excessive hypertrophy of cardiomyocytes and exacerbated mitochondrial damage. Isobaric tags for relative and absolute quantification-based quantitative proteomics identified NDP52 as a crucial target mediating cardiac hypertrophy induced by low-dose X-rays. SUMOylation proteomics revealed that the SUMO E3 ligase MUL1 facilitated NDP52 SUMOylation through SUMO2. Co-IP coupled with LC-MS/MS identified a critical lysine residue at position 262 of NDP52 as the key site for SUMO2-mediated SUMOylation of NDP52. The point mutation plasmid NDP52K262R inhibited mitophagy under MUL1 overexpression, as evidenced by inhibition of LC3 interaction with NDP52, PINK1 and LAMP2A. A mitochondrial dissociation study revealed that NDP52K262R inhibited PINK1 targeting to endosomes early endosomal marker (EEA1), late/lysosome endosomal marker (LAMP2A) and recycling endosomal marker (RAB11), and laser confocal microscopy confirmed that NDP52K262R impaired the recruitment of mitochondria to the autophagic pathway through EEA1/RAB11 and ATG3, ATG5, ATG16L1 and STX17, but did not affect mitochondrial delivery to lysosomes via LAMP2A for degradation. In conclusion, our findings suggest that MUL1-mediated SUMOylation of NDP52 plays a crucial role in regulating mitophagy in the context of low-dose X-ray-induced cardiac hypertrophy. Two hundred sixty-second lysine of NDP52 is identified as a key SUMOylation site for low-dose X-ray promoting mitophagy activation and cardiac hypertrophy. Collectively, this study provides novel implications for the development of therapeutic strategies aimed at preventing the progression of cardiac hypertrophy induced by low-dose X-rays.


Subject(s)
Mitophagy , Nuclear Proteins , Protein Kinases , Humans , Cardiomegaly/genetics , Chromatography, Liquid , Lysine/metabolism , Mitophagy/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Tandem Mass Spectrometry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , X-Rays , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
14.
BMC Genomics ; 25(1): 312, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532337

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is becoming a very well-known clinical entity and leads to increased heart failure in diabetic patients. Long non-coding RNAs (LncRNAs) play an important role in the pathogenesis of DCM. In the present study, the expression profiles of lncRNAs and mRNAs were illuminated in myocardium from DCM mice, with purpose of exploring probable pathological processes of DCM involved by differentially expressed genes in order to provide a new direction for the future researches of DCM. RESULTS: The results showed that a total of 93 differentially expressed lncRNA transcripts and 881 mRNA transcripts were aberrantly expressed in db/db mice compared with the controls. The top 6 differentially expressed lncRNAs like up-regulated Hmga1b, Gm8909, Gm50252 and down-regulated Msantd4, 4933413J09Rik, Gm41414 have not yet been reported in DCM. The lncRNAs-mRNAs co-expression network analysis showed that LncRNA 2610507I01Rik, 2310015A16Rik, Gm10503, A930015D03Rik and Gm48483 were the most relevant to differentially expressed mRNAs. CONCLUSION: Our results showed that db/db DCM mice exist differentially expressed lncRNAs and mRNAs in hearts. These differentially expressed lncRNAs may be involved in the pathological process of cardiomyocyte apoptosis and fibrosis in DCM.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , RNA, Long Noncoding , Humans , Mice , Animals , RNA, Long Noncoding/genetics , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Gene Expression Profiling/methods , Myocardium/metabolism , Computational Biology , RNA, Messenger/genetics , Gene Regulatory Networks , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology
15.
BMC Genomics ; 25(1): 675, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977976

ABSTRACT

BACKGROUND: The number of spikelets per spike is a key trait that affects the yield of bread wheat (Triticum aestivum L.). Identification of the QTL for spikelets per spike and its genetic effects that could be used in molecular assistant breeding in the future. RESULTS: In this study, four recombinant inbred line (RIL) populations were generated and used, having YuPi branching wheat (YP), with Supernumerary Spikelets (SS) phenotype, as a common parent. QTL (QSS.sicau-2 A and QSS.sicau-2D) related to SS trait were mapped on chromosomes 2 A and 2D through bulked segregant exome sequencing (BSE-Seq). Fourteen molecular markers were further developed within the localization interval, and QSS.sicau-2 A was narrowed to 3.0 cM covering 7.6 Mb physical region of the reference genome, explaining 13.7 - 15.9% the phenotypic variance. Similarly, the QSS.sicau-2D was narrowed to 1.8 cM covering 2.4 Mb physical region of the reference genome, and it explained 27.4 - 32.9% the phenotypic variance. These two QTL were validated in three different genetic backgrounds using the linked markers. QSS.sicau-2 A was identified as WFZP-A, and QSS.sicau-2D was identified a novel locus, different to the previously identified WFZP-D. Based on the gene expression patterns, gene annotation and sequence analysis, TraesCS2D03G0260700 was predicted to be a potential candidate gene for QSS.sicau-2D. CONCLUSION: Two significant QTL for SS, namely QSS.sicau-2 A and QSS.sicau-2D were identified in multiple environments were identified and their effect in diverse genetic populations was assessed. QSS.sicau-2D is a novel QTL associated with the SS trait, with TraesCS2D03G0260700 predicted as its candidate gene.


Subject(s)
Chromosome Mapping , Phenotype , Quantitative Trait Loci , Triticum , Triticum/genetics , Chromosomes, Plant/genetics , Genetic Association Studies , Genes, Plant
16.
J Am Chem Soc ; 146(14): 9811-9818, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38531024

ABSTRACT

Perfluorooctanoic acid (PFOA) is an environmental contaminant ubiquitous in water resources, which as a xenobiotic and carcinogenic agent, severely endangers human health. The development of techniques for its efficient removal is therefore highly sought after. Herein, we demonstrate an unprecedented zirconium-based MOF (PCN-999) possessing Zr6 and biformate-bridged (Zr6)2 clusters simultaneously, which exhibits an exceptional PFOA uptake of 1089 mg/g (2.63 mmol/g), representing a ca. 50% increase over the previous record for MOFs. Single-crystal X-ray diffraction studies and computational analysis revealed that the (Zr6)2 clusters offer additional open coordination sites for hosting PFOA. The coordinated PFOAs further enhance the interaction between coordinated and free PFOAs for physical adsorption, boosting the adsorption capacity to an unparalleled high standard. Our findings represent a major step forward in the fundamental understanding of the MOF-based PFOA removal mechanism, paving the way toward the rational design of next-generation adsorbents for per- and polyfluoroalkyl substance (PFAS) removal.

17.
J Am Chem Soc ; 146(20): 14174-14181, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38723205

ABSTRACT

Construction of robust heterogeneous catalysts with atomic precision is a long-sought pursuit in the catalysis field due to its fundamental significance in taming chemical transformations. Herein, we present the synthesis of a single-crystalline pyrazolate metal-organic framework (MOF) named PCN-300, bearing a lamellar structure with two distinct Cu centers and one-dimensional (1D) open channels when stacked. PCN-300 exhibits exceptional stability in aqueous solutions across a broad pH range from 1 to 14. In contrast, its monomeric counterpart assembled through hydrogen bonding displays limited stability, emphasizing the role of Cu-pyrazolate coordination bonds in framework robustness. Remarkably, the synergy of the 1D open channels, excellent stability, and the active Cu-porphyrin sites endows PCN-300 with outstanding catalytic activity in the cross dehydrogenative coupling reaction to form the C-O bond without the "compulsory" ortho-position directing groups (yields up to 96%), outperforming homogeneous Cu-porphyrin catalysts. Moreover, PCN-300 exhibits superior recyclability and compatibility with various phenol substrates. Control experiments reveal the synergy between the Cu-porphyrin center and framework in PCN-300 and computations unveil the free radical pathway of the reaction. This study highlights the power of robust pyrazolate MOFs in directly activating C-H bonds and catalyzing challenging chemical transformations in an environmentally friendly manner.

18.
J Am Chem Soc ; 146(22): 15446-15452, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776639

ABSTRACT

Linker installation is a potent strategy for integrating specific properties and functionalities into metal-organic frameworks (MOFs). This method enhances the structural diversity of frameworks and enables the precise construction of robust structures, complementing the conventional postsynthetic modification approaches, by fully leveraging open metal sites and active organic linkers at targeting locations. Herein, we demonstrated an insertion of a d-camphorate linker into a flexible Zr-based MOF, PCN-700, through linker installation. The resultant homochiral MOF not only exhibits remarkable stability but also functions as a highly efficient luminescent material for enantioselective sensing. Competitive absorption and energy/electron transfer processes contribute to the sensing performance, while the difference in binding affinities dominates the enantioselectivity. This work presents a straightforward route to crafting stable homochiral MOFs for enantioselective sensing.

19.
J Am Chem Soc ; 146(2): 1491-1500, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170908

ABSTRACT

3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).

20.
Emerg Infect Dis ; 30(6): 1299-1301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781980

ABSTRACT

We isolated severe fever with thrombocytopenia syndrome virus (SFTSV) from farmed minks in China, providing evidence of natural SFTSV infection in farmed minks. Our findings support the potential role of farmed minks in maintaining SFTSV and are helpful for the development of public health interventions to reduce human infection.


Subject(s)
Disease Outbreaks , Mink , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/classification , China/epidemiology , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/virology , Animals , Mink/virology , Phylogeny , Humans , Farms
SELECTION OF CITATIONS
SEARCH DETAIL