Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625050

ABSTRACT

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Subject(s)
Databases, Genetic , Neoplasms/pathology , Signal Transduction/genetics , Genes, Neoplasm , Humans , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
2.
Mol Cell ; 78(3): 506-521.e6, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32386543

ABSTRACT

Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.


Subject(s)
Chromatin/chemistry , Chromatin/genetics , DNA Methylation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Differentiation , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Histones/genetics , Histones/metabolism , Homeodomain Proteins/genetics , Humans , In Situ Hybridization, Fluorescence , Lysine/genetics , Lysine/metabolism , Nuclear Proteins/genetics , SOXB1 Transcription Factors/genetics , Short Stature Homeobox Protein/genetics , Transcription Factors/genetics
3.
Trends Genet ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39289103

ABSTRACT

The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.

4.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29628290

ABSTRACT

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Subject(s)
Genomics/methods , Neoplasms , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Macrophages/immunology , Male , Middle Aged , Neoplasms/classification , Neoplasms/genetics , Neoplasms/immunology , Prognosis , Th1-Th2 Balance/physiology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Wound Healing/genetics , Wound Healing/immunology , Young Adult
5.
Nucleic Acids Res ; 52(7): e38, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38407446

ABSTRACT

The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the standard workflow requires over 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. We developed experimental and analysis workflows to extend this technology to suboptimal input DNA conditions, including ultra-low input down to single cells. DNA preamplification significantly enhanced detection rates to over 50% in five-cell samples and ∼25% in single cells. Enzymatic conversion also substantially improved data quality. Computationally, we developed a method to model the background signal's influence on the DNA methylation level readings. The modified detection P-value calculation achieved higher sensitivities for low-input datasets and was validated in over 100 000 public diverse methylome profiles. We employed the optimized workflow to query the demethylation dynamics in mouse primordial germ cells available at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of DNA methylation in transposable element regulation during germ cell development. Collectively, we present comprehensive experimental and computational solutions to extend this widely used methylation assay technology to applications with limited DNA.


Subject(s)
DNA Methylation , Single-Cell Analysis , Animals , Female , Humans , Male , Mice , CpG Islands , DNA/genetics , DNA/metabolism , Epigenomics/methods , Germ Cells/metabolism , Oligonucleotide Array Sequence Analysis/methods , Single-Cell Analysis/methods
6.
Nucleic Acids Res ; 52(6): e32, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38412294

ABSTRACT

Data from both bulk and single-cell whole-genome DNA methylation experiments are under-utilized in many ways. This is attributable to inefficient mapping of methylation sequencing reads, routinely discarded genetic information, and neglected read-level epigenetic and genetic linkage information. We introduce the BISulfite-seq Command line User Interface Toolkit (BISCUIT) and its companion R/Bioconductor package, biscuiteer, for simultaneous extraction of genetic and epigenetic information from bulk and single-cell DNA methylation sequencing. BISCUIT's performance, flexibility and standards-compliant output allow large, complex experimental designs to be characterized on clinical timescales. BISCUIT is particularly suited for processing data from single-cell DNA methylation assays, with its excellent scalability, efficiency, and ability to greatly enhance mappability, a key challenge for single-cell studies. We also introduce the epiBED format for single-molecule analysis of coupled epigenetic and genetic information, facilitating the study of cellular and tissue heterogeneity from DNA methylation sequencing.


Subject(s)
DNA Methylation , Epigenesis, Genetic , High-Throughput Nucleotide Sequencing , Software , Epigenomics , Sequence Analysis, DNA , Sulfites
7.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36617464

ABSTRACT

The arrival of the Infinium DNA methylation BeadChips for mice and other nonhuman mammalian species has outpaced the development of the informatics that supports their use for epigenetics study in model organisms. Here, we present informatics infrastructure and methods to allow easy DNA methylation analysis on multiple species, including domesticated animals and inbred laboratory mice (in SeSAMe version 1.16.0+). First, we developed a data-driven analysis pipeline covering species inference, genome-specific data preprocessing and regression modeling. We targeted genomes of 310 species and 37 inbred mouse strains and showed that genome-specific preprocessing prevents artifacts and yields more accurate measurements than generic pipelines. Second, we uncovered the dynamics of the epigenome evolution in different genomic territories and tissue types through comparative analysis. We identified a catalog of inbred mouse strain-specific methylation differences, some of which are linked to the strains' immune, metabolic and neurological phenotypes. By streamlining DNA methylation array analysis for undesigned genomes, our methods extend epigenome research to broad species contexts.


Subject(s)
DNA Methylation , Epigenome , Mice , Animals , Oligonucleotide Array Sequence Analysis/methods , CpG Islands , Genome , Epigenesis, Genetic , Mammals/genetics
8.
Bioinformatics ; 40(7)2024 07 01.
Article in English | MEDLINE | ID: mdl-38963309

ABSTRACT

MOTIVATION: Infinium DNA methylation BeadChips are widely used for genome-wide DNA methylation profiling at the population scale. Recent updates to probe content and naming conventions in the EPIC version 2 (EPICv2) arrays have complicated integrating new data with previous Infinium array platforms, such as the MethylationEPIC (EPIC) and the HumanMethylation450 (HM450) BeadChip. RESULTS: We present mLiftOver, a user-friendly tool that harmonizes probe ID, methylation level, and signal intensity data across different Infinium platforms. It manages probe replicates, missing data imputation, and platform-specific bias for accurate data conversion. We validated the tool by applying HM450-based cancer classifiers to EPICv2 cancer data, achieving high accuracy. Additionally, we successfully integrated EPICv2 healthy tissue data with legacy HM450 data for tissue identity analysis and produced consistent copy number profiles in cancer cells. AVAILABILITY AND IMPLEMENTATION: mLiftOver is implemented R and available in the Bioconductor package SeSAMe (version 1.21.13+): https://bioconductor.org/packages/release/bioc/html/sesame.html. Analysis of EPIC and EPICv2 platform-specific bias and high-confidence mapping is available at https://github.com/zhou-lab/InfiniumAnnotationV1/raw/main/Anno/EPICv2/EPICv2ToEPIC_conversion.tsv.gz. The source code is available at https://github.com/zwdzwd/sesame/blob/devel/R/mLiftOver.R under the MIT license.


Subject(s)
DNA Methylation , Software , Humans , Neoplasms/genetics , Neoplasms/metabolism , Oligonucleotide Array Sequence Analysis/methods , Genome, Human
9.
Bioinformatics ; 39(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38092060

ABSTRACT

SUMMARY: In whole genome sequencing data, polymerase chain reaction amplification results in duplicate DNA fragments coming from the same location in the genome. The process of preparing a whole genome bisulfite sequencing (WGBS) library, on the other hand, can create two DNA fragments from the same location that should not be considered duplicates. Currently, only one WGBS-aware duplicate marking tool exists. However, it only works with the output from a single tool, does not accept streaming input or output, and requires a substantial amount of memory relative to the input size. Dupsifter provides an aligner-agnostic duplicate marking tool that is lightweight, has streaming capabilities, and is memory efficient. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are freely available at https://github.com/huishenlab/dupsifter under the MIT license. Dupsifter is implemented in C and is supported on macOS and Linux.


Subject(s)
DNA Methylation , Sulfites , Whole Genome Sequencing/methods , Sequence Analysis, DNA/methods , Software , DNA/genetics
10.
PLoS Genet ; 17(11): e1009908, 2021 11.
Article in English | MEDLINE | ID: mdl-34793451

ABSTRACT

EHMT2 is the main euchromatic H3K9 methyltransferase. Embryos with zygotic, or maternal mutation in the Ehmt2 gene exhibit variable developmental delay. To understand how EHMT2 prevents variable developmental delay we performed RNA sequencing of mutant and somite stage-matched normal embryos at 8.5-9.5 days of gestation. Using four-way comparisons between delayed and normal embryos we clarified what it takes to be normal and what it takes to develop. We identified differentially expressed genes, for example Hox genes that simply reflected the difference in developmental progression of wild type and the delayed mutant uterus-mate embryos. By comparing wild type and zygotic mutant embryos along the same developmental window we detected a role of EHMT2 in suppressing variation in the transcriptional switches. We identified transcription changes where precise switching during development occurred only in the normal but not in the mutant embryo. At the 6-somite stage, gastrulation-specific genes were not precisely switched off in the Ehmt2-/- zygotic mutant embryos, while genes involved in organ growth, connective tissue development, striated muscle development, muscle differentiation, and cartilage development were not precisely switched on. The Ehmt2mat-/+ maternal mutant embryos displayed high transcriptional variation consistent with their variable survival. Variable derepression of transcripts occurred dominantly in the maternally inherited allele. Transcription was normal in the parental haploinsufficient wild type embryos despite their delay, consistent with their good prospects. Global profiling of transposable elements revealed EHMT2 targeted DNA methylation and suppression at LTR repeats, mostly ERVKs. In Ehmt2-/- embryos, transcription over very long distances initiated from such misregulated 'driver' ERVK repeats, encompassing a multitude of misexpressed 'passenger' repeats. In summary, EHMT2 reduced transcriptional variation of developmental switch genes and developmentally switching repeat elements at the six-somite stage embryos. These findings establish EHMT2 as a suppressor of transcriptional and developmental variation at the transition between gastrulation and organ specification.


Subject(s)
Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/metabolism , Transcription, Genetic , Animals , CpG Islands , DNA Methylation , Female , Haploinsufficiency , Histone-Lysine N-Methyltransferase/genetics , Mice , Transcriptome
12.
Proc Natl Acad Sci U S A ; 117(32): 19359-19366, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32719115

ABSTRACT

Multicellular eukaryotic genomes show enormous differences in size. A substantial part of this variation is due to the presence of transposable elements (TEs). They contribute significantly to a cell's mass of DNA and have the potential to become involved in host gene control. We argue that the suppression of their activities by methylation of the C-phosphate-G (CpG) dinucleotide in DNA is essential for their long-term accommodation in the host genome and, therefore, to its expansion. An inevitable consequence of cytosine methylation is an increase in C-to-T transition mutations via deamination, which causes CpG loss. Cytosine deamination is often needed for TEs to take on regulatory functions in the host genome. Our study of the whole-genome sequences of 53 organisms showed a positive correlation between the size of a genome and the percentage of TEs it contains, as well as a negative correlation between size and the CpG observed/expected (O/E) ratio in both TEs and the host DNA. TEs are seldom found at promoters and transcription start sites, but they are found more at enhancers, particularly after they have accumulated C-to-T and other mutations. Therefore, the methylation of TE DNA allows for genome expansion and also leads to new opportunities for gene control by TE-based regulatory sites.


Subject(s)
DNA Methylation , Eukaryota/genetics , Genome , CpG Islands , Cytosine/metabolism , DNA Transposable Elements , Eukaryota/metabolism , Gene Expression Regulation , Genome Size , Mutation , Promoter Regions, Genetic
13.
Genome Res ; 28(8): 1147-1157, 2018 08.
Article in English | MEDLINE | ID: mdl-29970451

ABSTRACT

We provide a comprehensive genomic and epigenomic map of the more than 500,000 endogenous retroviruses (ERVs) and fragments that populate the intergenic regions of the human genome. The repressive epigenetic marks associated with the ERVs, particularly long terminal repeats (LTRs), show a remarkable switch in silencing mechanisms, depending on the evolutionary age of the LTRs. Young LTRs tend to be CpG rich and are mainly suppressed by DNA methylation, whereas intermediate age LTRs are associated predominantly with histone modifications, particularly histone H3 lysine 9 (H3K9) methylation. Young LTRs can be reactivated by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) alone, but their level of expression is much increased by 5-aza-CdR treatment plus knockdown of one of several H3K9 methyltransferases or of the H3K27 methyltransferase EZH2. The removal of cytosine methylation led to rapid, widespread increases in H3K9me3 in the LTRs. Intermediate age LTRs had lower CpG densities and were not up-regulated by 5-aza-CdR treatment, but they were sensitive to knockdown of H3K9 methyltransferases. Unlike the situation in embryonic stem cells, the polycomb repressive complex (PRC2) has a minor role in LTR suppression by itself and is only a player after removal of cytosine methylation in the analyzed cancer cell line. Up-regulation of LTRs and induction of "viral mimicry" is rapidly becoming of interest for predicting cancer patient response to epigenetic therapies. Understanding the mechanism for LTR suppression is of major importance in order to improve patient treatment strategies.


Subject(s)
CpG Islands/genetics , DNA Methylation/genetics , Endogenous Retroviruses/genetics , Terminal Repeat Sequences/genetics , Embryonic Stem Cells/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Silencing , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Polycomb Repressive Complex 2/genetics , Protein Processing, Post-Translational
14.
Proc Natl Acad Sci U S A ; 115(51): E11970-E11977, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30509985

ABSTRACT

Genomic imprinting mediated by DNA methylation restricts gene expression to a single allele determined by parental origin and is not generally considered to be under genetic or environmental influence. Here, we focused on a differentially methylated region (DMR) of approximately 1.9 kb that includes a 101-bp noncoding RNA gene (nc886/VTRNA2-1), which is maternally imprinted in ∼75% of humans. This is unlike other imprinted genes, which demonstrate monoallelic methylation in 100% of individuals. The DMR includes a CTCF binding site on the centromeric side defining the DMR boundary and is flanked by a CTCF binding site on the telomeric side. The centromeric CTCF binding site contains an A/C polymorphism (rs2346018); the C allele is associated with less imprinting. The frequency of imprinting of the nc886 DMR in infants was linked to at least two nongenetic factors, maternal age at delivery and season of conception. In a separate cohort, nc886 imprinting was associated with lower body mass index in children at 5 y of age. Thus, we propose that the imprinting status of the nc886 DMR is "tunable" in that it is associated with maternal haplotype and prenatal environment. This provides a potential mechanism for transmitting information, with phenotypic consequences, from mother to child.


Subject(s)
DNA Methylation , Epigenomics , Genomic Imprinting , Polymorphism, Genetic , Alleles , Binding Sites , CCCTC-Binding Factor , Child , Child, Preschool , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation , Haplotypes , Humans , Maternal Age , MicroRNAs/genetics , Mothers , Pregnancy , RNA, Untranslated/genetics
15.
Nat Methods ; 14(1): 65-67, 2017 01.
Article in English | MEDLINE | ID: mdl-27892959

ABSTRACT

We present novoBreak, a genome-wide local assembly algorithm that discovers somatic and germline structural variation breakpoints in whole-genome sequencing data. novoBreak consistently outperformed existing algorithms on real cancer genome data and on synthetic tumors in the ICGC-TCGA DREAM 8.5 Somatic Mutation Calling Challenge primarily because it more effectively utilized reads spanning breakpoints. novoBreak also demonstrated great sensitivity in identifying short insertions and deletions.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mutation/genetics , Neoplasms/genetics , Sequence Analysis, DNA/methods , Algorithms , Chromosome Breakpoints , Computational Biology , Genome, Human , Humans , Neoplasms/pathology , Software , Tumor Cells, Cultured
16.
Nucleic Acids Res ; 46(20): e123, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30085201

ABSTRACT

We report a new class of artifacts in DNA methylation measurements from Illumina HumanMethylation450 and MethylationEPIC arrays. These artifacts reflect failed hybridization to target DNA, often due to germline or somatic deletions and manifest as incorrectly reported intermediate methylation. The artifacts often survive existing preprocessing pipelines, masquerade as epigenetic alterations and can confound discoveries in epigenome-wide association studies and studies of methylation-quantitative trait loci. We implement a solution, P-value with out-of-band (OOB) array hybridization (pOOBAH), in the R package SeSAMe. Our method effectively masks deleted and hyperpolymorphic regions, reducing or eliminating spurious reports of epigenetic silencing at oft-deleted tumor suppressor genes such as CDKN2A and RB1 in cases with somatic deletions. Furthermore, our method substantially decreases technical variation whilst retaining biological variation, both within and across HM450 and EPIC platform measurements. SeSAMe provides a light-weight, modular DNA methylation data analysis suite, with a performant implementation suitable for efficient analysis of thousands of samples.


Subject(s)
Artifacts , DNA Methylation , High-Throughput Screening Assays/instrumentation , Oligonucleotide Array Sequence Analysis , Sequence Deletion , Software , Benchmarking , DNA Probes , DNA, Neoplasm/genetics , Datasets as Topic , Gene Dosage , Genome , Germ-Line Mutation , Humans , Neoplasms/genetics , Polymorphism, Genetic , Quantitative Trait Loci , Reproducibility of Results
17.
Hepatology ; 68(4): 1412-1428, 2018 10.
Article in English | MEDLINE | ID: mdl-29774579

ABSTRACT

There is an urgent need to develop more effective therapies for hepatocellular carcinoma (HCC) because of its aggressiveness. Guadecitabine (SGI-110) is a second-generation DNA methyltransferase inhibitor (DNMTi), which is currently in clinical trials for HCC and shows greater stability and performance over first-generation DNMTis. In order to identify potential therapeutic targets of SGI-110 for clinical trials, HCC cell lines (SNU398, HepG2, and SNU475) were used to evaluate the effects of transient SGI-110 treatment by an integrative analysis of DNA methylation, nucleosome accessibility, gene expression profiles, and its clinical relevance by comparison to The Cancer Genome Atlas (TCGA) HCC clinical data. Each HCC cell line represents a different DNA methylation subtype of primary HCC tumors based on TCGA data. After SGI-110 treatment, all cell lines were sensitive to SGI-110 with prolonged antiproliferation effects. Expression of up-regulated genes, including tumor suppressors, was positively correlated with nucleosome accessibility and negatively correlated with gene promoter DNA methylation. Alternatively, expression of down-regulated genes, such as oncogenes, was negatively correlated with nucleosome accessibility and positively correlated with gene body DNA methylation. SGI-110 can also act as a dual inhibitor to down-regulate polycomb repressive complex 2 (PRC2) genes by demethylating their gene bodies, resulting in reactivation of PRC2 repressed genes without involvement of DNA methylation. Furthermore, it can up-regulate endogenous retroviruses to reactivate immune pathways. Finally, about 48% of frequently altered genes in primary HCC tumors can be reversed by SGI-110 treatment. CONCLUSION: Our integrative analysis has successfully linked the antitumor effects of SGI-110 to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets, and provided a rationale for combination treatments of SGI-110 with immune checkpoint therapies.


Subject(s)
Azacitidine/analogs & derivatives , Carcinoma, Hepatocellular/drug therapy , Gene Expression Regulation, Neoplastic , Liver Neoplasms/drug therapy , Methyltransferases/genetics , Azacitidine/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor/drug effects , DNA Methylation , Enzyme Inhibitors/pharmacology , Epigenomics/methods , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Molecular Targeted Therapy , Sensitivity and Specificity
18.
Nucleic Acids Res ; 45(4): e22, 2017 02 28.
Article in English | MEDLINE | ID: mdl-27924034

ABSTRACT

Illumina Infinium DNA Methylation BeadChips represent the most widely used genome-scale DNA methylation assays. Existing strategies for masking Infinium probes overlapping repeats or single nucleotide polymorphisms (SNPs) are based largely on ad hoc assumptions and subjective criteria. In addition, the recently introduced MethylationEPIC (EPIC) array expands on the utility of this platform, but has not yet been well characterized. We present in this paper an extensive characterization of probes on the EPIC and HM450 microarrays, including mappability to the latest genome build, genomic copy number of the 3΄ nested subsequence and influence of polymorphisms including a previously unrecognized color channel switch for Type I probes. We show empirical evidence for exclusion criteria for underperforming probes, providing a sounder basis than current ad hoc criteria for exclusion. In addition, we describe novel probe uses, exemplified by the addition of a total of 1052 SNP probes to the existing 59 explicit SNP probes on the EPIC array and the use of these probes to predict ethnicity. Finally, we present an innovative out-of-band color channel application for the dual use of 62 371 probes as internal bisulfite conversion controls.


Subject(s)
DNA Methylation , DNA Probes , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Alleles , CpG Islands , Gene Dosage , Gene Frequency , Genomics/methods , HeLa Cells , Humans , Molecular Sequence Annotation/methods , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Repetitive Sequences, Nucleic Acid
19.
Proc Natl Acad Sci U S A ; 113(37): 10238-44, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27573823

ABSTRACT

Vitamin C deficiency is found in patients with cancer and might complicate various therapy paradigms. Here we show how this deficiency may influence the use of DNA methyltransferase inhibitors (DNMTis) for treatment of hematological neoplasias. In vitro, when vitamin C is added at physiological levels to low doses of the DNMTi 5-aza-2'-deoxycytidine (5-aza-CdR), there is a synergistic inhibition of cancer-cell proliferation and increased apoptosis. These effects are associated with enhanced immune signals including increased expression of bidirectionally transcribed endogenous retrovirus (ERV) transcripts, increased cytosolic dsRNA, and activation of an IFN-inducing cellular response. This synergistic effect is likely the result of both passive DNA demethylation by DNMTi and active conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) enzymes at LTR regions of ERVs, because vitamin C acts as a cofactor for TET proteins. In addition, TET2 knockout reduces the synergy between the two compounds. Furthermore, we show that many patients with hematological neoplasia are markedly vitamin C deficient. Thus, our data suggest that correction of vitamin C deficiency in patients with hematological and other cancers may improve responses to epigenetic therapy with DNMTis.


Subject(s)
Ascorbic Acid/administration & dosage , Azacitidine/analogs & derivatives , Enzyme Inhibitors/administration & dosage , Hematologic Neoplasms/drug therapy , Apoptosis/drug effects , Ascorbic Acid Deficiency/complications , Ascorbic Acid Deficiency/drug therapy , Ascorbic Acid Deficiency/metabolism , Ascorbic Acid Deficiency/pathology , Azacitidine/administration & dosage , Cell Proliferation/drug effects , DNA Methylation/drug effects , DNA-Binding Proteins/genetics , Decitabine , Dioxygenases , Drug Synergism , Endogenous Retroviruses/genetics , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/pathology , Humans , Interferons/genetics , Male , Methyltransferases/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA, Double-Stranded/drug effects
20.
BMC Genomics ; 18(1): 50, 2017 01 07.
Article in English | MEDLINE | ID: mdl-28061744

ABSTRACT

BACKGROUND: DNA and RNA fractions from whole blood, serum and plasma are increasingly popular analytes that are currently under investigation for their utility in the diagnosis and staging of disease. Small non-coding ribonucleic acids (sRNAs), specifically microRNAs (miRNAs) and their variant isoforms (isomiRs), and transfer RNA (tRNA)-derived small RNAs (tDRs) comprise a repertoire of molecules particularly promising in this regard. RESULTS: In this designed study, we compared the performance of various methods and kits for isolating circulating extracellular sRNAs (ex-sRNAs). ex-sRNAs from one healthy individual were isolated using five different isolation kits: Qiagen Circulating Nucleic Acid Kit, ThermoFisher Scientific Ambion TRIzol LS Reagent, Qiagen miRNEasy, QiaSymphony RNA extraction kit and the Exiqon MiRCURY RNA Isolation Kit. Each isolation method was repeated four times. A total of 20 small RNA sequencing (sRNAseq) libraries were constructed, sequenced and compared using a rigorous bioinformatics approach. The Circulating Nucleic Acid Kit had the greatest miRNA isolation variability, but had the lowest isolation variability for other RNA classes (isomiRs, tDRs, and other miscellaneous sRNAs (osRNA). However, the Circulating Nucleic Acid Kit consistently generated the fewest number of reads mapped to the genome, as compared to the best-performing method, Ambion TRIzol, which mapped 10% of the miRNAs, 7.2% of the tDRs and 23.1% of the osRNAs. The other methods performed intermediary, with QiaSymphony mapping 14% of the osRNAs, and miRNEasy mapping 4.6% of the tDRs and 2.9% of the miRNAs, achieving the second best kit performance rating overall. CONCLUSIONS: In summary, each isolation kit displayed different performance characteristics that could be construed as biased or advantageous, depending upon the downstream application and number of samples that require processing.


Subject(s)
Extracellular Space/genetics , High-Throughput Nucleotide Sequencing , RNA, Small Untranslated/genetics , RNA, Small Untranslated/isolation & purification , Sequence Analysis, RNA , Humans , RNA, Small Untranslated/blood
SELECTION OF CITATIONS
SEARCH DETAIL