Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EMBO J ; 42(15): e111951, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37334492

ABSTRACT

BRCA1 expression is highly regulated to prevent genomic instability and tumorigenesis. Dysregulation of BRCA1 expression correlates closely with sporadic basal-like breast cancer and ovarian cancer. The most significant characteristic of BRCA1 regulation is periodic expression fluctuation throughout the cell cycle, which is important for the orderly progression of different DNA repair pathways throughout the various cell cycle phases and for further genomic stability. However, the underlying mechanism driving this phenomenon is poorly understood. Here, we demonstrate that RBM10-mediated RNA alternative splicing coupled to nonsense-mediated mRNA decay (AS-NMD), rather than transcription, determines the periodic fluctuations in G1/S-phase BRCA1 expression. Furthermore, AS-NMD broadly regulates the expression of period genes, such as DNA replication-related genes, in an uneconomical but more rapid manner. In summary, we identified an unexpected posttranscriptional mechanism distinct from canonical processes that mediates the rapid regulation of BRCA1 as well as other period gene expression during the G1/S-phase transition and provided insights into potential targets for cancer therapy.


Subject(s)
Breast Neoplasms , Nonsense Mediated mRNA Decay , Humans , Female , Alternative Splicing , RNA Splicing , Breast Neoplasms/genetics , Genomic Instability , BRCA1 Protein/genetics , RNA-Binding Proteins/genetics
2.
Mol Cell ; 75(6): 1299-1314.e6, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31353207

ABSTRACT

MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Homologous Recombination , MRE11 Homologue Protein/metabolism , Mitochondrial Proteins/metabolism , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Acid Anhydride Hydrolases/genetics , Animals , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , MRE11 Homologue Protein/genetics , Mitochondrial Proteins/genetics , Multiprotein Complexes/genetics , Nuclear Proteins/genetics , Protein Stability , Sf9 Cells , Spodoptera
3.
Proc Natl Acad Sci U S A ; 121(24): e2404383121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38843184

ABSTRACT

Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Humans , Animals , Mice , DNA Helicases/metabolism , DNA Helicases/genetics , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Transcription, Genetic , Phosphorylation , Casein Kinase II/metabolism , Casein Kinase II/genetics , Mice, Knockout , DNA Damage , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Chromatin/metabolism , Ubiquitination , Excision Repair
4.
Proc Natl Acad Sci U S A ; 117(45): 28239-28250, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33109719

ABSTRACT

Aberrant programmed cell death protein 1 (PD-1) expression on the surface of T cells is known to inhibit T cell effector activity and to play a pivotal role in tumor immune escape; thus, maintaining an appropriate level of PD-1 expression is of great significance. We identified KLHL22, an adaptor of the Cul3-based E3 ligase, as a major PD-1-associated protein that mediates the degradation of PD-1 before its transport to the cell surface. KLHL22 deficiency leads to overaccumulation of PD-1, which represses the antitumor response of T cells and promotes tumor progression. Importantly, KLHL22 was markedly decreased in tumor-infiltrating T cells from colorectal cancer patients. Meanwhile, treatment with 5-fluorouracil (5-FU) could increase PD-1 expression by inhibiting the transcription of KLHL22. These findings reveal that KLHL22 plays a crucial role in preventing excessive T cell suppression by maintaining PD-1 expression homeostasis and suggest the therapeutic potential of 5-FU in combination with anti-PD-1 in colorectal cancer patients.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Homeostasis , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/drug effects , Adaptor Proteins, Signal Transducing/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Fluorouracil , HEK293 Cells , Humans , Immune Checkpoint Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteolysis , Signal Transduction , Transcriptome , Tumor Microenvironment/immunology , Ubiquitin-Protein Ligases/metabolism
5.
Cancer Gene Ther ; 31(1): 94-107, 2024 01.
Article in English | MEDLINE | ID: mdl-37949945

ABSTRACT

The replication-stress response is essential to ensure the faithful transmission of genetic information to daughter cells. Although several stress-resolution pathways have been identified to deal with replication stress, the precise regulatory mechanisms for replication fork stability are not fully understood. Our study identified Methyl-CpG Binding Domain 1 (MBD1) as essential for the maintaining genomic stability and protecting stalled replication forks in mammalian cells. Depletion of MBD1 increases DNA lesions and sensitivity to replication stress. Mechanistically, we found that loss of MBD1 leads to the dissociation of Poly(ADP-ribose) polymerase 1 (PARP1) from the replication fork, potentially accelerating fork progression and resulting in higher levels of transcription-replication conflicts (T-R conflicts). Using a proximity ligation assay combined with 5-ethynyl-2'-deoxyuridine, we revealed that the MBD1 and PARP1 proteins were recruited to stalled forks under hydroxyurea (HU) treatment. In addition, our study showed that the level of R-loops also increased in MBD1-delated cells. Without MBD1, stalled replication forks resulting from T-R conflicts were primarily degraded by the DNA2 nuclease. Our findings shed light on a new aspect of MBD1 in maintaining genome stability and providing insights into the mechanisms underlying replication stress response.


Subject(s)
DNA Damage , DNA Replication , Humans , Animals , Genomic Instability , Mammals/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism
6.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37934606

ABSTRACT

Mutations in the BRCA2 tumor suppressor gene have been associated with an increased risk of developing prostate cancer. One of the paradoxes concerning BRCA2 is the fact that its inactivation affects genetic stability and is deleterious for cellular and organismal survival, while BRCA2-mutated cancer cells adapt to this detriment and malignantly proliferate. Therapeutic strategies for tumors arising from BRCA2 mutations may be discovered by understanding these adaptive mechanisms. In this study, we conducted forward genetic synthetic viability screenings in Caenorhabditis elegans brc-2 (Cebrc-2) mutants and found that Ceubxn-2 inactivation rescued the viability of Cebrc-2 mutants. Moreover, loss of NSFL1C, the mammalian ortholog of CeUBXN-2, suppressed the spindle assembly checkpoint (SAC) activation and promoted the survival of BRCA2-deficient cells. Mechanistically, NSFL1C recruited USP9X to inhibit the polyubiquitination of AURKB and reduce the removal of AURKB from the centromeres by VCP, which is essential for SAC activation. SAC inactivation is common in BRCA2-deficient prostate cancer patients, but PP2A inhibitors could reactivate the SAC and achieve BRCA2-deficient prostate tumor synthetic lethality. Our research reveals the survival adaptation mechanism of BRCA2-deficient prostate tumor cells and provides different angles for exploring synthetic lethal inhibitors in addition to targeting DNA damage repair pathways.


Subject(s)
Prostatic Neoplasms , Synthetic Lethal Mutations , Animals , Humans , Male , BRCA2 Protein , Caenorhabditis elegans/genetics , M Phase Cell Cycle Checkpoints/genetics , Mammals/metabolism , Mutation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Ubiquitin Thiolesterase/genetics , Protein Phosphatase 2/metabolism
7.
Cancer Biol Med ; 17(4): 805-827, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33299637

ABSTRACT

Viewing cancer as a large, evolving population of heterogeneous cells is a common perspective. Because genomic instability is one of the fundamental features of cancer, this intrinsic tendency of genomic variation leads to striking intratumor heterogeneity and functions during the process of cancer formation, development, metastasis, and relapse. With the increased mutation rate and abundant diversity of the gene pool, this heterogeneity leads to cancer evolution, which is the major obstacle in the clinical treatment of cancer. Cells rely on the integrity of DNA repair machineries to maintain genomic stability, but these machineries often do not function properly in cancer cells. The deficiency of DNA repair could contribute to the generation of cancer genomic instability, and ultimately promote cancer evolution. With the rapid advance of new technologies, such as single-cell sequencing in recent years, we have the opportunity to better understand the specific processes and mechanisms of cancer evolution, and its relationship with DNA repair. Here, we review recent findings on how DNA repair affects cancer evolution, and discuss how these mechanisms provide the basis for critical clinical challenges and therapeutic applications.


Subject(s)
Cell Transformation, Neoplastic/genetics , DNA Repair , Genomic Instability , Neoplasms/metabolism , Animals , Humans , Neoplasms/genetics , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL