Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Med Virol ; 95(2): e28554, 2023 02.
Article in English | MEDLINE | ID: mdl-36738232

ABSTRACT

Lung cancer is a fatal disease with the highest worldwide morbidity and mortality rates. Despite recent advances in targeted therapy and immune checkpoint inhibitors for cancer, their efficacy remained limited. Therefore, we designed a Newcastle disease virus (NDV)-modified tumor whole-cell vaccine as a therapeutic vaccine and identified its antigen presentation level to develop effective immunotherapy. Then, we calculated the therapeutic and immune-stimulating effects of NDV-modified lung cancer cell vaccine and intratumoral NDV injection combination on tumor-bearing mice. The results showed that the immunogenic cell death (ICD) expression in NDV-modified lung cancer cell vaccine stimulates dendritic cell maturation and T cell activation in vivo and in vitro. Moreover, NDV-modified lung cancer cell vaccine combined with intratumoral NDV injection could significantly inhibit tumor growth and enhance the differentiation of Th1 cells and Inflammatory cell infiltration in vivo, leading to an excellent immunotherapeutic effect. Therefore, our results revealed that NDV-modified lung cancer cell vaccine combined with intratumoral NDV injection could promote antigen presentation and induce a strong antitumor immune response, which provided a promising combined therapy strategy for tumor immunotherapy.


Subject(s)
Cancer Vaccines , Lung Neoplasms , Animals , Mice , Newcastle disease virus , Immunotherapy/methods , Cancer Vaccines/metabolism , Immunity
2.
Bioorg Chem ; 115: 105178, 2021 10.
Article in English | MEDLINE | ID: mdl-34303897

ABSTRACT

Four undescribed ent-kaurane diterpenoids, wilkaunoids A - D (1-4), and three undescribed abietane diterpenoids, wilabinoids A - C (13-15), along with thirteen known ones (5-12 and 16-20), were isolated from Tripterygium wilfordii. Their structures were elucidated by extensive spectroscopic methods, electroniccirculardichroism calculation, and X-ray diffraction analysis. Compounds 1 and 2 were a pair of C-19 epimers of ent-kaurane diterpenoids, featuring a rare 19,20-epoxy-19,20-dimethoxy-kaurane fragment. Compound 3 possessed a rare naturally occurring 1,3-dioxacyclohexane moiety. Compounds 13 and 15 represented the first example of abietane diterpenoids with an isovalerate substitution from the genus of Tripterygium. The possible biosynthetic pathways of 1-3 were postulated. The effect of 1-20 on nitric oxide production was examined in lipopolysaccharide-stimulated RAW 264.7 cells. Abietane diterpenoid quinones 7-13 (IC50: 1.9-10.2 µM) exhibited the significant activity to inhibit nitric oxide production versus positive control (NG-monomethyl-l-arginine acetate salt, IC50 = 24.9 µM). The structure activity relationship of 7-13 in inhibiting nitric oxide production was then discussed. The most potent 7 and 8 were found to significantly suppress the expression of cyclooxygenase-2 and inducible nitric oxide synthase proteins, showing a good anti-inflammatory potential. The findings provided some valuable insights for the discovery and structural modification of abietane diterpenoids towards anti-inflammatory lead compounds.


Subject(s)
Abietanes/pharmacology , Anti-Inflammatory Agents/pharmacology , Diterpenes, Kaurane/pharmacology , Tripterygium/chemistry , Abietanes/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Diterpenes, Kaurane/chemistry , Macrophages/drug effects , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells
3.
Chem Biodivers ; 18(4): e2001066, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33656782

ABSTRACT

Three new matrine-type alkaloids, 8ß-hydroxyoxysophoridine (1), 9ß-hydroxysophoridine (2), 9ß-hydroxyisosophocarpine (3), together with one known analog, 11,12-dehydromatrine (4), were isolated from the seeds of Sophora alopecuroides L. The structures of new compounds were elucidated using extensive spectroscopic techniques including the experimental and calculated ECD data. The anti-inflammatory activities of all the isolates on NO production in RAW 264.7 cells stimulated by lipopolysaccharide were evaluated. Among them, 8ß-hydroxyoxysophoridine (1) showed a significant inhibitory effect with an IC50 value of 18.26 µM.


Subject(s)
Alkaloids/pharmacology , Anti-Inflammatory Agents/pharmacology , Nitric Oxide/antagonists & inhibitors , Plant Extracts/pharmacology , Seeds/chemistry , Sophora/chemistry , Alkaloids/chemistry , Alkaloids/isolation & purification , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Nitric Oxide/biosynthesis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , RAW 264.7 Cells
4.
PLoS Genet ; 13(5): e1006770, 2017 May.
Article in English | MEDLINE | ID: mdl-28489859

ABSTRACT

Isoflavones comprise a group of secondary metabolites produced almost exclusively by plants in the legume family, including soybean [Glycine max (L.) Merr.]. They play vital roles in plant defense and have many beneficial effects on human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Via a genome-wide association study (GWAS), we identified 28 single nucleotide polymorphisms (SNPs) that are significantly associated with isoflavone concentrations in soybean. One of these 28 SNPs was located in the 5'-untranslated region (5'-UTR) of an R2R3-type MYB transcription factor, GmMYB29, and this gene was thus selected as a candidate gene for further analyses. A subcellular localization study confirmed that GmMYB29 was located in the nucleus. Transient reporter gene assays demonstrated that GmMYB29 activated the IFS2 (isoflavone synthase 2) and CHS8 (chalcone synthase 8) gene promoters. Overexpression and RNAi-mediated silencing of GmMYB29 in soybean hairy roots resulted in increased and decreased isoflavone content, respectively. Moreover, a candidate-gene association analysis revealed that 11 natural GmMYB29 polymorphisms were significantly associated with isoflavone contents, and regulation of GmMYB29 expression could partially contribute to the observed phenotypic variation. Taken together, these results provide important genetic insights into the molecular mechanisms underlying isoflavone biosynthesis in soybean.


Subject(s)
Glycine max/genetics , Isoflavones/biosynthesis , Plant Proteins/genetics , Transcription Factors/genetics , 5' Untranslated Regions , Acyltransferases/genetics , Acyltransferases/metabolism , Isoflavones/genetics , Oxygenases/genetics , Oxygenases/metabolism , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Glycine max/metabolism , Transcription Factors/metabolism
5.
J Cell Biochem ; 118(11): 4012-4019, 2017 11.
Article in English | MEDLINE | ID: mdl-28407300

ABSTRACT

Thrombin has been shown to play a key role in lung diseases such as pulmonary fibrosis via the induction of fibrotic cytokine- chemokine (CC motif) ligand-2 (CCL2) expression. We previously reported that transcription factor nuclear factor-κB (NF-κB) is responsible for thrombin-induced CCL2 expression in human lung fibroblasts (HLFs). Here, we extended our study to investigate the epigenetic regulation mechanism for thrombin-induced CCL2 expression in HLFs. HLFs were cultured in F-12 medium. CCL2 protein and mRNA levels were detected by ELISA and quantitative real-time PCR, respectively. Histone, histone acetyltransferases, and NF-κB binding to CCL2 promoter were detected by ChIP assay. NF-κB activation was detected by Western blotting. We revealed that increased binding of histone acetyltransferase p300 and acetylated histone H3 and H4 to CCL2 promoter are responsible for thrombin induced CCL2 expression in HLF cells. In addition, p300 inhibition attenuates both thrombin induced-CCL2 expression and histone H3 and H4 acetylation in HLFs, suggesting that p300 is involved in thrombin-induced CCL2 expression via hyperacetylating histone H3 and H4. Our data further showed that p300 also regulates CCL2 expression via interaction with NF-κB p65, as depletion of p300 inhibits both NF-κB p65 activation and its binding to CCL2 promoter. The findings strongly suggest that epigenetic dysregulation and the interaction between histone acetyltransferase and transcription factor may be responsible for thrombin induced-CCL2 expression in HLFs. Increased understanding of the epigenetic mechanisms of CCL2 regulation may provide opportunities for identifying novel molecular targets for therapeutic purposes. J. Cell. Biochem. 118: 4012-4019, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Chemokine CCL2/biosynthesis , E1A-Associated p300 Protein/metabolism , Epigenesis, Genetic/drug effects , Fibroblasts/metabolism , Histones/metabolism , Lung/metabolism , Thrombin/pharmacology , Transcription Factor RelA/metabolism , Acetylation/drug effects , Fibroblasts/cytology , Humans , Lung/cytology
6.
BMC Genomics ; 17: 373, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27206527

ABSTRACT

BACKGROUND: Soybean is a major source of oil and protein in the human diet and in animal feed. However, as soybean is deficient in sulfur-containing amino acids, its nutritional value is limited. Increasing sulfate assimilation and utilization efficiency is a valuable approach to augment the concentration of sulfur-containing amino acids in soybean seeds, and sulfate transporters play important roles in both sulfate uptake and translocation within plants. RESULTS: In this study, we isolated and characterized a soybean sulfate transporter gene: GmSULTR1;2b. The gene was found to be specifically expressed in root tissues and induced by low-sulfur stress. In addition, GmSULTR1;2b expression in yeast could complement deficiency in the sulfate transporter genes SUL1 and SUL2. Under +S conditions, GmSULTR1;2b-overexpressing tobacco plants accumulated higher levels of organic matter and exhibited enhanced biomass and seed weight compared to control plants. Under -S conditions, acclimation of GmSULTR1;2b-overexpressing plants was much better than control plants. GmSULTR1;2b-overexpressing tobacco seedlings showed better tolerance to drought stress than the control plants, but no significant difference was observed under salt stress. Transcriptome analysis revealed 515 genes with at least a 2-fold change in expression in the leaves of tobacco plants overexpressing GmSULTR1;2b. Of these, 227 gene annotations were classified into 12 functional categories associated with 123 relevant pathways, including biosynthesis and metabolism-related proteins, stress-related proteins, and transporters. CONCLUSIONS: The findings reported here indicate that the increased biomass and seed yield observed in transgenic tobacco plants could have resulted from greater nutrient uptake and transport capability as well as enhanced development and accumulation of organic matter. Taken together, our results indicate that GmSULTR1;2b plays an important role in sulfur uptake and could alter the sulfur status of plants. Our study suggests that overexpressing GmSULTR1;2b may enhance plant yield under +S conditions, reduce plant production loss under -S conditions, and improve plant tolerance to sulfur deficiency stress.


Subject(s)
Anion Transport Proteins/genetics , Genetic Association Studies , Glycine max/genetics , Anion Transport Proteins/metabolism , Biomass , Gene Expression Regulation, Plant , Phenotype , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Glycine max/classification , Glycine max/metabolism , Sulfates/metabolism , Sulfur/deficiency , Nicotiana/genetics
7.
Funct Integr Genomics ; 16(5): 481-93, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27179522

ABSTRACT

Calcium-dependent protein kinases (CDPKs) play important roles in various aspects of plant physiology and involve in many cellular processes. However, genome-wide analysis of CDPK family in plant species is limited and few studies have been reported in soybean. In this study, a total of 39 genes encoding CDPKs were identified from the whole-genome sequence of soybean (Glycine max), which were denominated as GmCPK1-GmCPK39. These 39 CDPK genes could be classified into four subfamilies, and most genes showed tissue-specific expression patterns. Eight soybean CDPKs clustered together with the previously reported CDPKs related to pathogen, wounding, or herbivore stress were further analyzed. Differential gene expression analysis of these eight CDPK genes in response to herbivore and wounding stresses helps us identify GmCPK3 and GmCPK31 as the candidate genes for herbivore resistance in soybean, whose relative transcript abundance rapidly increased after wound and herbivore attacks. Sub-cellular localization revealed that GmCPK3 and GmCPK31 were localized in plasma membranes, which is consistent with previously reported plant defense related CDPKs. These results may suggest that GmCPK3 and GmCPK31 play important roles in the plant response to biotic stress. Simultaneously, our study will provide an important foundation for further functional characterization of the soybean CDPK gene family.


Subject(s)
Glycine max/genetics , Phylogeny , Protein Kinases/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Genome, Plant , Herbivory , High-Throughput Nucleotide Sequencing , Multigene Family , Protein Kinases/biosynthesis , Protein Kinases/classification , Glycine max/enzymology
8.
Exp Cell Res ; 319(17): 2708-17, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23958463

ABSTRACT

Hepatocellular carcinoma (HCC) cells undergo the epithelial-mesenchymal transition (EMT) during chemotherapy, which reduces the efficacy of doxorubicin-based chemotherapy. We investigated N1-guanyl-1,7-diaminoheptane (GC7) which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation; eIF5A2 is associated with chemoresistance. GC7 enhanced doxorubicin cytotoxicity in epithelial HCC cells (Huh7, Hep3B and HepG2) but had little effect in mesenchymal HCC cells (SNU387, SNU449). GC7 suppressed the doxorubicin-induced EMT in epithelial HCC cells; knockdown of eIF5A2 inhibited the doxorubicin-induced EMT and enhanced doxorubicin cytotoxicity. GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in HCC by inhibiting eIF5A2 activation and preventing the EMT.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Hepatocellular/drug therapy , Doxorubicin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Guanine/analogs & derivatives , Liver Neoplasms/drug therapy , Peptide Initiation Factors/antagonists & inhibitors , RNA-Binding Proteins/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Doxorubicin/therapeutic use , Guanine/pharmacology , Guanine/therapeutic use , Hep G2 Cells , Humans , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Eukaryotic Translation Initiation Factor 5A
9.
Lipids Health Dis ; 13: 151, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25266321

ABSTRACT

BACKGROUND: Polyunsaturated fatty acid (PUFA) intake favorably affects chronic inflammatory-related diseases such as cardiovascular disease; however, the relationship between the PUFA and inflammatory factors in the healthy vegetarians were not clear. We aimed to investigate the plasma fatty acids status, and its association with plasma inflammatory factors in Chinese vegetarians and omnivores. METHODS: A total of 89 male vegetarians and 106 male omnivores were participated the study. Plasma concentrations of inflammatory factors were detected by ELISA, and as standard methods fatty acids were extracted and determined by chromatography. RESULTS: Compared with omnivores, vegetarians have significant higher interleukin-6 (IL-6), plasma n-6 PUFA, n-6/n-3, and 18:3n-3; while they have significant lower leukotriene B4 (LTB4), cyclo-oxygenase-2 (COX2) and prostaglandin E2 (PGE2), 20:5n-3, 22:5n-3, 22:6n-3, and n-3 PUFA. In vegetarians, plasma 20:4n-6 was significant positively related to TNF-α. LTB4 was significantly positively related to plasma 22:6n-3, and negatively associated with n-6 PUFA. CONCLUSION: Vegetarians have higher plasma n-6 PUFA and IL-6, but lower LTB4, n-3 PUFA, 22:6n-3, COX2 and PGE2 levels. It would seem appropriate for vegetarians to increase their dietary n-3 PUFA, while reduce dietary n-6 PUFA and thus reduce the risk of chronic inflammatory-related diseases.


Subject(s)
Diet, Vegetarian , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Interleukins/blood , Adult , China , Cross-Sectional Studies , Humans , Inflammation Mediators/blood , Male , Middle Aged , Young Adult
10.
J Inflamm Res ; 17: 4229-4245, 2024.
Article in English | MEDLINE | ID: mdl-38979432

ABSTRACT

Background: This study aimed to discover diagnostic and prognostic biomarkers for sepsis immunotherapy through analyzing the novel cellular death process, cuproptosis. Methods: We used transcriptome data from sepsis patients to identify key cuproptosis-related genes (CuRGs). We created a predictive model and used the CIBERSORT algorithm to observe the link between these genes and the septic immune microenvironment. We segregated sepsis patients into three subgroups, comparing immune function, immune cell infiltration, and differential analysis. Single-cell sequencing and real-time quantitative PCR were used to view the regulatory effect of CuRGs on the immune microenvironment and compare the mRNA levels of these genes in sepsis patients and healthy controls. We established a sepsis forecast model adapted to heart rate, body temperature, white blood cell count, and cuproptosis key genes. This was followed by a drug sensitivity analysis of cuproptosis key genes. Results: Our results filtered three key genes (LIAS, PDHB, PDHA1) that impact sepsis prognosis. We noticed that the high-risk group had poorer immune cell function and lesser immune cell infiltration. We also discovered a significant connection between CuRGs and immune cell infiltration in sepsis. Through consensus clustering, sepsis patients were classified into three subgroups. The best immune functionality and prognosis was observed in subgroup B. Single-cell sequencing exposed that the key genes manage the immune microenvironment by affecting T cell activation. The qPCR results highlighted substantial mRNA level reduction of the three key genes in the SP compared to the HC. The prediction model, which combines CuRGs and traditional diagnostic indicators, performed better in accuracy than the other markers. The drug sensitivity analysis listed bisphenol A as highly sensitive to all the key genes. Conclusion: Our study suggests these CuRGs may offer substantial potential for sepsis prognosis prediction and personalized immunotherapy.

11.
Thromb Res ; 237: 1-13, 2024 May.
Article in English | MEDLINE | ID: mdl-38513536

ABSTRACT

BACKGROUND: Sepsis is a common and critical condition encountered in clinical practice that can lead to multi-organ dysfunction. Sepsis-induced coagulopathy (SIC) significantly affects patient outcomes. However, the precise mechanisms remain unclear, making the identification of effective prognostic and therapeutic targets imperative. METHODS: The analysis of transcriptome data from the whole blood of sepsis patients, facilitated the identification of key genes implicated in coagulation. Then we developed a prognostic model and a nomogram to predict patient survival. Consensus clustering classified sepsis patients into three subgroups for comparative analysis of immune function and immune cell infiltration. Single-cell sequencing elucidated alterations in intercellular communication between platelets and immune cells in sepsis, as well as the role of the coagulation-related gene FYN. Real-time quantitative PCR determined the mRNA levels of critical coagulation genes in septic rats' blood. Finally, administration of a FYN agonist to septic rats was observed for its effects on coagulation functions and survival. RESULTS: This study identified four pivotal genes-CFD, FYN, ITGAM, and VSIG4-as significant predictors of survival in patients with sepsis. Among them, CFD, FYN, and ITGAM were underexpressed, while VSIG4 was upregulated in patients with sepsis. Moreover, a nomogram that incorporates the coagulation-related genes (CoRGs) risk score with clinical features of patients accurately predicted survival probabilities. Subgroup analysis of CoRGs expression delineated three molecular sepsis subtypes, each with distinct prognoses and immune profiles. Single-cell sequencing shed light on heightened communication between platelets and monocytes, T cells, and plasmacytoid dendritic cells, alongside reduced interactions with neutrophils in sepsis. The collagen signaling pathway was found to be essential in this dynamic. FYN may affect platelet function by modulating factors such as ELF1, PTCRA, and RASGRP2. The administration of the FYN agonist can effectively improve coagulation dysfunction and survival in septic rats. CONCLUSIONS: The research identifies CoRGs as crucial prognostic markers for sepsis, highlighting the FYN gene's central role in coagulation disorders associated with the condition and suggesting novel therapeutic intervention strategies.


Subject(s)
Sepsis , Sepsis/complications , Sepsis/blood , Humans , Rats , Animals , Prognosis , Male , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/etiology , Female , Rats, Sprague-Dawley
12.
Mol Neurobiol ; 61(3): 1331-1345, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37700217

ABSTRACT

    Although multiple factors are known to concur with Alzheimer's disease (AD), the relationship between human cytomegalovirus (HCMV) and AD-like disease is unclear. Here, we propose a hypothesis that HCMV immediate-early 2 (IE2) protein promotes microglia activation and thus leads to AD-like disease. We successfully constructed IE2 transgenic mice expressing IE2 in the hippocampus. Single-cell sequencing analysis revealed that IE2 promoted the activation of microglia and upregulated the expression of disease-associated microglia genes. Differentially expressed gene analysis and pathway enrichment revealed that IE2 upregulated immune and nervous system disease-related genes. Immunohistochemical analysis showed that the expressions of both amyloid precursor protein (APP) and p-Tau were significantly upregulated in the brains of IE2 mice and were markers of AD. Taken together, these findings provide useful insights into AD-like disease activated by HCMV IE2.


Subject(s)
Alzheimer Disease , Immediate-Early Proteins , Humans , Mice , Animals , Mice, Transgenic , Microglia/metabolism , Alzheimer Disease/genetics , Trans-Activators/metabolism , Cytomegalovirus , Gene Expression Profiling , Sequence Analysis, RNA
13.
J Zhejiang Univ Sci B ; 25(3): 254-270, 2024 Mar 15.
Article in English, Zh | MEDLINE | ID: mdl-38453639

ABSTRACT

As a potential vectored vaccine, Newcastle disease virus (NDV) has been subject to various studies for vaccine development, while relatively little research has outlined the immunomodulatory effect of the virus in antigen presentation. To elucidate the key inhibitory factor in regulating the interaction of infected dendritic cells (DCs) and T cells, DCs were pretreated with the NDV vaccine strain LaSota as an inhibitor and stimulated with lipopolysaccharide (LPS) for further detection by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunoblotting, and quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that NDV infection resulted in the inhibition of interleukin (IL)-12p40 in DCs through a p38 mitogen-activated protein kinase (MAPK)|-dependent manner, thus inhibiting the synthesis of IL-12p70, leading to the reduction in T cell proliferation and the secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-6 induced by DCs. Consequently, downregulated cytokines accelerated the infection and viral transmission from DCs to T cells. Furthermore, several other strains of NDV also exhibited inhibitory activity. The current study reveals that NDV can modulate the intensity of the innate|‒|adaptive immune cell crosstalk critically toward viral invasion improvement, highlighting a novel mechanism of virus-induced immunosuppression and providing new perspectives on the improvement of NDV-vectored vaccine.


Subject(s)
Newcastle disease virus , Vaccines , Animals , Newcastle disease virus/physiology , Interleukin-12/pharmacology , Antigen Presentation , Vaccines/pharmacology , Dendritic Cells
14.
Mol Neurobiol ; 60(7): 3883-3897, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36991278

ABSTRACT

Human cytomegalovirus (HCMV) is a significant contributor to congenital birth defects. Limited by the lack of animal models, the pathogenesis of neurological damage in vivo caused by HCMV infection and the role of individual viral genes remain to be elucidated. Immediate early (IE2) protein may play a function in neurodevelopmental problems caused by HCMV infection. Here, this study intended to investigate IE2's long-term effects on development of the brain in IE2-expressing transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) aimed to observe the phenotype of postnatal mice. The expression of IE2 in transgenic mice was confirmed by PCR and Western blot technology. We collected mouse brain tissue at 2, 4, 6, 8, and 10 days postpartum to analyze the developmental process of neural stem cells by immunofluorescence. We discovered that transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) can reliably produce IE2 in the brain at various postpartum phases. Furthermore, we also observed the symptoms of microcephaly in postnatal transgenic mice, and IE2 can damage the amount of neural stem cells, prevent them from proliferating and differentiating, and activate microglia and astrocytes, creating an unbalanced environment in the brain's neurons. In conclusion, we demonstrate that long-term expression of HCMV-IE2 can cause microcephaly through molecular mechanisms affecting the differentiation and development of neural stem cells in vivo. This work establishes a theoretical and experimental foundation for elucidating the molecular mechanism of fetal microcephaly brought by HCMV infection in throughout the period of neural development of pregnancy.


Subject(s)
Immediate-Early Proteins , Microcephaly , Pregnancy , Female , Humans , Mice , Animals , Cytomegalovirus , Mice, Transgenic , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Microcephaly/genetics , Virus Replication
15.
Virulence ; 14(1): 2169488, 2023 12.
Article in English | MEDLINE | ID: mdl-36723437

ABSTRACT

Human cytomegalovirus (HCMV) infection is prevalent worldwide, and there is currently no licenced HCMV vaccine to control it. Therefore, developing an effective HCMV vaccine is a significant priority. Because of their excellent immunogenicity, the crucial components of HCMV, phosphoprotein 65 (pp65) and glycoproteins H (gH) are potential target proteins for HCMV vaccine design. In this study, we predicted and screened the dominant antigenic epitopes of B and T cells from pp65 and gH conjugated with the carrier protein cross-reacting material 197 (CRM197) to form three peptide-CRM197 vaccines (pp65-CRM197, gH-CRM197, and pp65-CRM197+gH-CRM197). Furthermore, the immunogenicity of the peptide-CRM197 vaccines and their effects on dendritic cells (DCs) were explored. The results showed that three peptide-CRM197 vaccines could induce maturation of DCs through the p38 MAPK signalling pathway and promote the release of proinflammatory factors, such as TNF-α and interleukin (IL) -6. Meanwhile, the peptide-CRM197 vaccines could effectively activate T cell and humoral immunity, which were far better than the inactivated HCMV vaccine. In conclusion, we constructed three peptide-CRM197 vaccines, which could induce multiple immune effects, providing a novel approach for HCMV vaccine design.


Subject(s)
Cytomegalovirus Vaccines , Cytomegalovirus , Humans , Cytomegalovirus/genetics , Glycoproteins , Peptides , T-Lymphocytes
16.
Sci Rep ; 13(1): 6701, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095192

ABSTRACT

Metabolic diseases are often associated with high fructose (HF) consumption. HF has also been found to alter the gut microbiota, which then favors the development of nonalcoholic fatty liver disease. However, the mechanisms underlying of the gut microbiota on this metabolic disturbance are yet to be determined. Thus, in this study, we further explored the effect the gut microbiota concerning the T cells balance in an HF diet mouse model. We fed mice 60% fructose-enriched diet for 12 weeks. At 4 weeks, HF diet did not affect the liver, but it caused injury to the intestine and adipose tissues. After 12 weeks, the lipid droplet aggregation was markedly increased in the liver of HF-fed mice. Further analysis of the gut microbial composition showed that HF decreased the Bacteroidetes/Firmicutes ratio and increased the levels of Blautia, Lachnoclostridium, and Oscillibacter. In addition, HF can increase the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in the serum. T helper type 1 cells were significantly increased, and regulatory T(Treg) cells were markedly decreased in the mesenteric lymph nodes of the HF-fed mice. Furthermore, fecal microbiota transplantation alleviates systemic metabolic disorder by maintaining liver and intestinal immune homeostasis. Overall, our data indicated that intestinal structure injury and intestinal inflammation might be early, and liver inflammation and hepatic steatosis may be a subsequent effect following HF diets. Gut microbiota disorders impairing the intestinal barrier function and triggering immune homeostasis imbalance may be an importantly responsible for long-term HF diets induced hepatic steatosis.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Fructose/metabolism , Liver/metabolism , Diet , Non-alcoholic Fatty Liver Disease/metabolism , Inflammation/metabolism , Diet, High-Fat , Mice, Inbred C57BL
17.
Biol Direct ; 18(1): 85, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071369

ABSTRACT

INTRODUCTION: Inflammation and nerve injury promote astrocyte activation, which regulates the development and resolution of pain, in the spinal dorsal horn. APOE regulates lipid metabolism and is predominantly expressed in the astrocytes. However, the effect of astrocytic APOE and lipid metabolism on spinal cellular function is unclear. This study aimed to investigate the effect of spinal Apoe on spinal cellular functions using the complete Freund's adjuvant (CFA)-induced inflammatory pain mouse model. METHODS: After intraplantar injection of CFA, we assessed pain behaviors in C57BL6 and Apoe knockout (Apoe-/-) mice using von Frey and Hargreaves' tests and analyzed dorsal horn samples (L4-5) using western blotting, immunofluorescence, quantitative real-time polymerase chain reaction, and RNA sequencing. RESULTS: The Apoe levels were markedly upregulated at 2 h and on days 1 and 3 post-CFA treatment. Apoe was exclusively expressed in the astrocytes. Apoe-/- mice exhibited decreased pain on day 1, but not at 2 h, post-CFA treatment. Apoe-/- mice also showed decreased spinal neuron excitability and paw edema on day 1 post-CFA treatment. Global transcriptomic analysis of the dorsal horn on day 1 post-CFA treatment revealed that the differentially expressed mRNAs in Apoe-/- mice were associated with lipid metabolism and the immune system. Astrocyte activation was impaired in Apoe-/- mice on day 1 post-CFA treatment. The intrathecal injection of Apoe antisense oligonucleotide mitigated CFA-induced pain hypersensitivity. CONCLUSIONS: Apoe deficiency altered lipid metabolism in astrocytes, exerting regulatory effects on immune response, astrocyte activation, and neuronal activity and consequently disrupting the maintenance of inflammatory pain after peripheral inflammation. Targeting APOE is a potential anti-nociception and anti-inflammatory strategy.


Subject(s)
Apolipoproteins E , Hyperalgesia , Lipid Metabolism , Pain , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Freund's Adjuvant/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/genetics , Hyperalgesia/metabolism , Inflammation , Pain/chemically induced , Pain/metabolism , Spinal Cord Dorsal Horn/metabolism , Mice, Knockout, ApoE
18.
Life Sci ; 332: 122088, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37730112

ABSTRACT

AIMS: Epigenetic regulation is implicated in the neurogenesis of neuropathic pain. The repressor element 1 (RE1) silencing transcription factor (REST) corepressor (CoREST) proteins function as corepressors in the REST complex and/or LSD1 epigenetic complex. In the current study, we aimed to find the expression profile of CoREST1 in the dorsal root ganglion (DRG) and investigate whether it plays a role in neuropathic pain. MAIN METHODS: The evoked pain behaviors in mice were examined by the von Frey test and thermal test in a spinal nerve ligation (SNL)-induced neuropathic pain mice model. CoREST1 siRNA or virus was administered by DRG microinjection or intrathecal injection. The CoREST1 expression in DRGs was examined by immunofluorescence, quantitative PCR, Western blotting, and co-immunoprecipitation. KEY FINDINGS: CoREST1 was non-selectively expressed in large, medium, and small DRG neurons, and it exclusively colocalized with LSD1. In neuropathic pain models, peripheral nerve injury induced the upregulation of CoREST1 and increased binding of CoREST1 with LSD1 in injured DRGs in male mice. Furthermore, CoREST1 siRNA prevented the development of SNL-induced pain hypersensitivity as well as led to the reduction of established pain hypersensitivity during the maintenance period in SNL mice. Conversely, the overexpression of CoREST1 in DRGs by in vivo transfection of virus-induced pain hypersensitivity in naive mice. SIGNIFICANCE: Our study demonstrated that CoREST1, along with LSD1, was expressed in primary sensory neurons specifically in response to nerve injury, and promoted nociceptive pain hypersensitivity in mice. Thus, CoREST1 might serve as a potential target for treating neuropathic pain.

19.
Neuropharmacology ; 224: 109372, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36502869

ABSTRACT

Apolipoprotein E (ApoE) is an apolipoprotein involved in lipid metabolism and is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). The aim of this study is to explore the role of ApoE in the pathological development of neuropathic pain. First, we examined the location of ApoE in the dorsal root ganglion (DRG) and spinal cord in male mice using immunohistochemistry, and found that ApoE was predominantly expressed in DRG satellite glial cells (SGCs) and macrophages and spinal cord astrocytes. Using a spinal nerve ligation (SNL)-induced neuropathic pain mouse model, we found that nerve injury caused an increase in ApoE expression in the injured DRGs, but not in the spinal cord after SNL surgery. Furthermore, we observed reduced SNL-induced pain hypersensitivity in ApoE knockout mice compared to wild-type mice. Moreover, an antisense oligonucleotide (ASO) targeting the Apoe gene sequence, which was microinjected into the DRG or administered intrathecally, not only reduced ApoE expression in DRG but also attenuated SNL-induced pain hypersensitivity. Finally, we found that a tyrosine kinase receptor AXL, which was previously demonstrated to contribute to neuropathic pain, may mediate ApoE function under neuropathic pain condition. In conclusion, our data suggest that ApoE in DRG promote pain hypersensitivity via the DRG membrane receptor AXL in neurons under neuropathic pain conditions. This study revealed a novel mechanism between lipid homeostasis and neuropathic pain.


Subject(s)
Ganglia, Spinal , Neuralgia , Animals , Male , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Rats, Sprague-Dawley , Spinal Nerves/injuries , Up-Regulation , Rats
20.
Int J Biol Macromol ; 224: 79-93, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36252620

ABSTRACT

Human cytomegalovirus (HCMV) infection is a major cause of neonatal neurodevelopmental disorders and serious complications in organ transplantation. Previous HCMV vaccines focused on humoral immunity but had limited effect on viral infection. T-cell responses are essential to prevent HCMV infection, indicating that effective vaccines require T cells activation. In this study, we designed a novel polypeptides vaccine conjugated to a CRM197 carrier protein, encoding 15 CD8+ T-cell epitopes, five CD4+ T-cell epitopes, and four B-cell epitopes from gB287-320 and pp150311-325 of HCMV to induce T-cell immune responses. To evaluate the effectiveness of vaccines, we subsequently measured the expression of surface molecule markers and proinflammatory cytokines from antigen presenting cells in vivo and in vitro as well as the activation of T cells and antibodies. The results demonstrated that this polypeptide vaccine could activate innate immunity including up-regulating MHCI, II, CD80, CD86, and cytokine expression through the TLR4/NF-κB pathway. Meanwhile, vaccinations elicited potent neutralizing antibody and cellular immune responses producing TNF-α, INF-γ and IL-2, indicating Th1-biased polarization. This finding underlines that CRM197-conjugated polypeptide vaccines facilitate a synergism of humoral and cellular immunity, providing enhanced protection against HCMV, which could be a potential strategy to prevent CMV-associated diseases.


Subject(s)
Cytomegalovirus Vaccines , Vaccines , Infant, Newborn , Humans , Cytomegalovirus , Epitopes, T-Lymphocyte , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL