Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.019
Filter
1.
Mol Cell ; 84(7): 1191-1205.e7, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38458202

ABSTRACT

Polycomb repressive complex 1 (PRC1) is a key transcriptional regulator in development via modulating chromatin structure and catalyzing histone H2A ubiquitination at Lys119 (H2AK119ub1). H2AK119ub1 is one of the most abundant histone modifications in mammalian cells. However, the function of H2AK119ub1 in polycomb-mediated gene silencing remains debated. In this study, we reveal that H2AK119ub1 has two distinct roles in gene expression, through differentially modulating chromatin compaction mediated by canonical PRC1 and the linker histone H1. Interestingly, we find that H2AK119ub1 plays a positive role in transcription through interfering with the binding of canonical PRC1 to nucleosomes and therefore counteracting chromatin condensation. Conversely, we demonstrate that H2AK119ub1 facilitates H1-dependent chromatin condensation and enhances the silencing of developmental genes in mouse embryonic stem cells, suggesting that H1 may be one of several possible pathways for H2AK119ub1 in repressing transcription. These results provide insights and molecular mechanisms by which H2AK119ub1 differentially fine-tunes developmental gene expression.


Subject(s)
Chromatin , Polycomb Repressive Complex 1 , Animals , Mice , Chromatin/genetics , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Nucleosomes/genetics , Ubiquitination , Gene Expression , Mammals/metabolism
2.
Nature ; 631(8021): 678-685, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961301

ABSTRACT

Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.


Subject(s)
Centromere , Evolution, Molecular , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Nucleotide Motifs , Animals , Humans , Mice , Centromere/genetics , Centromere/metabolism , Chickens , Chromobox Protein Homolog 5 , Gene Silencing , Heterochromatin/metabolism , Heterochromatin/chemistry , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/chemistry , Histones/metabolism , Histones/chemistry , Lancelets , Methylation , Petromyzon , Repressor Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Snakes , Xenopus laevis , Zebrafish , Zinc Fingers
3.
Nature ; 616(7955): 176-182, 2023 04.
Article in English | MEDLINE | ID: mdl-36991118

ABSTRACT

Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.


Subject(s)
Deubiquitinating Enzymes , Histones , Polycomb Repressive Complex 1 , Polycomb-Group Proteins , Humans , Cryoelectron Microscopy , Histones/chemistry , Histones/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/ultrastructure , Polycomb-Group Proteins/chemistry , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/ultrastructure , Ubiquitin/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/ultrastructure , Ubiquitination , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Repressor Proteins/ultrastructure , Catalytic Domain , Deubiquitinating Enzymes/classification , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/ultrastructure , Substrate Specificity , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure
4.
Immunity ; 49(4): 695-708.e4, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30291027

ABSTRACT

B cells can present antigens to CD4+ T cells, but it is thought that dendritic cells (DCs) are the primary initiators of naive CD4+ T cell responses. Nanoparticles, including virus-like particles (VLPs), are attractive candidates as carriers for vaccines and drug delivery. Using RNA phage Qß-derived VLP (Qß-VLP) as a model antigen, we found that antigen-specific B cells were the dominant antigen-presenting cells that initiated naive CD4+ T cell activation. B cells were sufficient to induce T follicular helper cell development in the absence of DCs. Qß-specific B cells promoted CD4+ T cell proliferation and differentiation via cognate interactions and through Toll-like receptor signaling-mediated cytokine production. Antigen-specific B cells were also involved in initiating CD4+ T cell responses during immunization with inactivated influenza virus. These findings have implications for the rational design of nanoparticles as vaccine candidates, particularly for therapeutic vaccines that aim to break immune tolerance.


Subject(s)
Antigen-Presenting Cells/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Immunization/methods , Influenza Vaccines/immunology , Animals , Antigen Presentation/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Cell Differentiation/immunology , Cytokines/immunology , Cytokines/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nanoparticles/chemistry , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Toll-Like Receptors/immunology , Vaccines, Inactivated/immunology
5.
BMC Cancer ; 24(1): 229, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373978

ABSTRACT

Transcriptional Co-Activator with PDZ-Binding Motif (TAZ, also known as WWTR1) is a downstream effector of the Hippo pathway, involved in the regulation of organ regeneration and cell differentiation in processes such as development and regeneration. TAZ has been shown to play a tumor-promoting role in various cancers. Currently, many studies focus on the role of TAZ in the process of mitophagy. However, the molecular mechanism and biological function of TAZ in renal clear cell carcinoma (KIRC) are still unclear. Therefore, we systematically analyzed the mRNA expression profile and clinical data of KIRC in The Cancer Genome Atlas (TCGA) dataset. We found that TAZ expression was significantly upregulated in KIRC compared with normal kidney tissue and was closely associated with poor prognosis of patients. Combined with the joint analysis of 36 mitophagy genes, it was found that TAZ was significantly negatively correlated with the positive regulators of mitophagy. Finally, our results confirmed that high expression of TAZ in KIRC inhibits mitophagy and promotes KIRC cell proliferation. In conclusion, our findings reveal the important role of TAZ in KIRC and have the potential to be a new target for KIRC therapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Mitophagy , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Proliferation/genetics , Gene Expression Profiling , Intracellular Signaling Peptides and Proteins/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mitophagy/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics
6.
Pharmacol Res ; 205: 107263, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876442

ABSTRACT

Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.


Subject(s)
Endoplasmic Reticulum Stress , Heart Failure , Histone-Lysine N-Methyltransferase , Mice, Inbred C57BL , Myocytes, Cardiac , Animals , Heart Failure/metabolism , Heart Failure/genetics , Heart Failure/etiology , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Endoplasmic Reticulum Stress/drug effects , Male , Humans , Mice, Knockout , Rats , Mice , Cells, Cultured , Cardiomegaly/metabolism , Cardiomegaly/genetics , Rats, Sprague-Dawley , Thrombospondins
7.
Wound Repair Regen ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129718

ABSTRACT

Wound healing is a complex, dynamic process involving the coordinated interaction of diverse cell types, growth factors, cytokines, and extracellular matrix components. Despite emerging evidence highlighting their importance, dermal sheath cells remain a largely overlooked aspect of wound healing research. This review explores the multifunctional roles of dermal sheath cells in various phases of wound healing, including modulating inflammation, aiding in proliferation, and contributing to extracellular matrix remodelling. Special attention is devoted to the paracrine effects of dermal sheath cells and their role in fibrosis, highlighting their potential in improving healing outcomes, especially in differentiating between hairy and non-hairy skin sites. By drawing connections between dermal sheath cells activity and wound healing outcomes, this work proposes new insights into the mechanisms of tissue regeneration and repair, marking a step forward in our understanding of wound healing processes.

8.
Nature ; 564(7734): 136-140, 2018 12.
Article in English | MEDLINE | ID: mdl-30487604

ABSTRACT

Postnatal growth of mammalian oocytes is accompanied by a progressive gain of DNA methylation, which is predominantly mediated by DNMT3A, a de novo DNA methyltransferase1,2. Unlike the genome of sperm and most somatic cells, the oocyte genome is hypomethylated in transcriptionally inert regions2-4. However, how such a unique feature of the oocyte methylome is determined and its contribution to the developmental competence of the early embryo remains largely unknown. Here we demonstrate the importance of Stella, a factor essential for female fertility5-7, in shaping the oocyte methylome in mice. Oocytes that lack Stella acquire excessive DNA methylation at the genome-wide level, including in the promoters of inactive genes. Such aberrant hypermethylation is partially inherited by two-cell-stage embryos and impairs zygotic genome activation. Mechanistically, the loss of Stella leads to ectopic nuclear accumulation of the DNA methylation regulator UHRF18,9, which results in the mislocalization of maintenance DNA methyltransferase DNMT1 in the nucleus. Genetic analysis confirmed the primary role of UHRF1 and DNMT1 in generating the aberrant DNA methylome in Stella-deficient oocytes. Stella therefore safeguards the unique oocyte epigenome by preventing aberrant de novo DNA methylation mediated by DNMT1 and UHRF1.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Epigenesis, Genetic , Oocytes/metabolism , Repressor Proteins/metabolism , Animals , CCAAT-Enhancer-Binding Proteins , Cell Line , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Embryonic Development , Female , Genome/genetics , Humans , Mice , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Repressor Proteins/deficiency , Repressor Proteins/genetics , Ubiquitin-Protein Ligases , Zygote/metabolism
9.
Cereb Cortex ; 33(16): 9504-9513, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37376787

ABSTRACT

The efficacy of motor imagery training for motor recovery is well acknowledged, but with substantial inter-individual variability in stroke patients. To help optimize motor imagery training therapy plans and screen suitable patients, this study aimed to explore neuroimaging biomarkers explaining variability in treatment response. Thirty-nine stroke patients were randomized to a motor imagery training group (n = 22, received a combination of conventional rehabilitation therapy and motor imagery training) and a control group (n = 17, received conventional rehabilitation therapy and health education) for 4 weeks of interventions. Their demography and clinical information, brain lesion from structural MRI, spontaneous brain activity and connectivity from rest fMRI, and sensorimotor brain activation from passive motor task fMRI were acquired to identify prognostic factors. We found that the variability of outcomes from sole conventional rehabilitation therapy could be explained by the reserved sensorimotor neural function, whereas the variability of outcomes from motor imagery training + conventional rehabilitation therapy was related to the spontaneous activity in the ipsilesional inferior parietal lobule and the local connectivity in the contralesional supplementary motor area. The results suggest that additional motor imagery training treatment is also efficient for severe patients with damaged sensorimotor neural function, but might be more effective for patients with impaired motor planning and reserved motor imagery.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Prognosis , Recovery of Function/physiology , Stroke/diagnostic imaging , Stroke/therapy , Stroke/pathology , Neuroimaging , Magnetic Resonance Imaging/methods
10.
Mol Cell ; 64(5): 913-925, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27840027

ABSTRACT

TET family enzymes successively oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, leading to eventual demethylation. 5hmC and TET enzymes occupy distinct chromatin regions, suggesting unknown mechanisms controlling the fate of 5hmC within diverse chromatin environments. Here, we report that SALL4A preferentially associates with 5hmC in vitro and occupies enhancers in mouse embryonic stem cells in a largely TET1-dependent manner. Although most 5hmC at SALL4A peaks undergoes further oxidation, this process is abrogated upon deletion of Sall4 gene, with a concomitant reduction of TET2 at these regions. Thus, SALL4A facilitates further oxidation of 5hmC at its binding sites, which requires its 5hmC-binding activity and TET2, supporting a collaborative action between SALL4A and TET proteins in regulating stepwise oxidation of 5mC at enhancers. Our study identifies SALL4A as a 5hmC binder, which facilitates 5hmC oxidation by stabilizing TET2 association, thereby fine-tuning expression profiles of developmental genes in mouse embryonic stem cells.


Subject(s)
5-Methylcytosine/metabolism , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Animals , DNA Methylation , Dioxygenases , Enhancer Elements, Genetic/physiology , Mice , Oxidation-Reduction , Proto-Oncogene Proteins/metabolism , Transcription, Genetic
11.
World J Surg Oncol ; 22(1): 111, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664824

ABSTRACT

BACKGROUND: The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that influence surgical difficulty. Establishing a nomogram aims to assist clinical practitioners in formulating more effective surgical plans before the procedure. METHODS: This study included 186 patients with rectal cancer who underwent LaTME from January 2018 to December 2020. They were divided into a training cohort (n = 131) versus a validation cohort (n = 55). The difficulty of LaTME was defined based on Escal's et al. scoring criteria with modifications. We utilized Lasso regression to screen the preoperative clinical characteristic variables and intraoperative information most relevant to surgical difficulty for the development and validation of four ML models: logistic regression (LR), support vector machine (SVM), random forest (RF), and decision tree (DT). The performance of the model was assessed based on the area under the receiver operating characteristic curve(AUC), sensitivity, specificity, and accuracy. Logistic regression-based column-line plots were created to visualize the predictive model. Consistency statistics (C-statistic) and calibration curves were used to discriminate and calibrate the nomogram, respectively. RESULTS: In the validation cohort, all four ML models demonstrate good performance: SVM AUC = 0.987, RF AUC = 0.953, LR AUC = 0.950, and DT AUC = 0.904. To enhance visual evaluation, a logistic regression-based nomogram has been established. Predictive factors included in the nomogram are body mass index (BMI), distance between the tumor to the dentate line ≤ 10 cm, radiodensity of visceral adipose tissue (VAT), area of subcutaneous adipose tissue (SAT), tumor diameter >3 cm, and comorbid hypertension. CONCLUSION: In this study, four ML models based on intraoperative and preoperative risk factors and a nomogram based on logistic regression may be of help to surgeons in evaluating the surgical difficulty before operation and adopting appropriate responses and surgical protocols.


Subject(s)
Laparoscopy , Machine Learning , Nomograms , Rectal Neoplasms , Humans , Rectal Neoplasms/surgery , Rectal Neoplasms/pathology , Laparoscopy/methods , Female , Male , Middle Aged , Prognosis , Aged , Follow-Up Studies , Risk Factors , Retrospective Studies , ROC Curve
12.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3220-3228, 2024 Jun.
Article in Zh | MEDLINE | ID: mdl-39041083

ABSTRACT

This paper aims to study the spectrum-effect relationship between the fingerprints before and after salt processing of Dipsacus asper and the efficacy of warming and tonifying kidney Yang and find the main active components against kidney Yang deficiency before and after salt processing of D. asper, so as to provide the basis for clarifying the effect of salt processing on kidney Yang deficiency. The HPLC fingerprint before and after salt processing of D. asper was established by the HPLC-DAD. 15 common peaks were obtained, and 11 components were identified. The content changes of various components in rat serum were detected, and the difference in efficacy before and after salt processing was compared. The results of pharmacological experiments showed that salt processing of D. asper could enhance the kidney index. At the same dose, there was a significant difference between the raw D. asper and D. asper after salt processing groups. Compared with the model group, the contents of ACTH, cAMP, CORT, E_2, GH, Na~+-K~+-ATPase, T, and T4 in the serum of rats in the administration group increased to a certain extent, and the contents of cGMP and TNF-α decreased to a certain extent. Among them, there were significant differences in the above indexes in the serum of rats in the high-dose group of raw D. asper, middle-dose group of D. asper after salt processing, high-dose group of D. asper after salt processing, and the positive drug group. The overall results showed that D. asper after salt processing was more effective than raw D. asper in preventing kidney yang deficiency. The efficacy of D. asper was evaluated by grey correlation analysis, entropy method, and Pearson correlation analysis, and the components of D. asper after salt processing against kidney yang deficiency were screened out. According to the results of correlation degree ranking, the components with increased ranking before and after salt processing of D. asper were loganin, chlorogenic acid, dipsacoside A, asperosaponin Ⅵ, caffeic acid, and isochlorogenic acid B. It was preliminarily speculated that these compounds may be the potential pharmacodynamic components for the treatment of kidney yang deficiency before and after salt processing of D. asper. The changing components before and after the salt processing of D. asper were determined, which proved that D. asper after salt processing was superior to D. asper in the treatment of kidney yang deficiency. The spectrum-effect relationship between the efficacy of D. asper before and after salt processing and the treatment of kidney yang deficiency was established, which laid a foundation for the subsequent study on the pharmacodynamic components and molecular mechanism of salt processing of D. asper.


Subject(s)
Dipsacaceae , Drugs, Chinese Herbal , Kidney , Yang Deficiency , Animals , Rats , Dipsacaceae/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Male , Yang Deficiency/drug therapy , Yang Deficiency/physiopathology , Kidney/drug effects , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid , Kidney Diseases/drug therapy , Kidney Diseases/physiopathology
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 378-384, 2024 Apr 15.
Article in Zh | MEDLINE | ID: mdl-38660902

ABSTRACT

OBJECTIVES: To dynamically observe the changes in hypoxia-inducible factor 1α (HIF-1α) and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in children with traumatic brain injury (TBI) and evaluate their clinical value in predicting the severity and prognosis of pediatric TBI. METHODS: A prospective study included 47 children with moderate to severe TBI from January 2021 to July 2023, categorized into moderate (scores 9-12) and severe (scores 3-8) subgroups based on the Glasgow Coma Scale. A control group consisted of 30 children diagnosed and treated for inguinal hernia during the same period, with no underlying diseases. The levels of HIF-1α, BNIP3, autophagy-related protein Beclin-1, and S100B were compared among groups. The predictive value of HIF-1α, BNIP3, Beclin-1, and S100B for the severity and prognosis of TBI was assessed using receiver operating characteristic (ROC) curves. RESULTS: Serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in the TBI group were higher than those in the control group (P<0.05). Among the TBI patients, the severe subgroup had higher levels of HIF-1α, BNIP3, Beclin-1, and S100B than the moderate subgroup (P<0.05). Correlation analysis showed that the serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were negatively correlated with the Glasgow Coma Scale scores (P<0.05). After 7 days of treatment, serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in both non-surgical and surgical TBI patients decreased compared to before treatment (P<0.05). ROC curve analysis indicated that the areas under the curve for predicting severe TBI based on serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were 0.782, 0.835, 0.872, and 0.880, respectively (P<0.05), and for predicting poor prognosis of TBI were 0.749, 0.775, 0.814, and 0.751, respectively (P<0.05). CONCLUSIONS: Serum levels of HIF-1α, BNIP3, and Beclin-1 are significantly elevated in children with TBI, and their measurement can aid in the clinical assessment of the severity and prognosis of pediatric TBI.


Subject(s)
Beclin-1 , Brain Injuries, Traumatic , Hypoxia-Inducible Factor 1, alpha Subunit , Membrane Proteins , Humans , Male , Female , Brain Injuries, Traumatic/blood , Child , Membrane Proteins/blood , Child, Preschool , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Beclin-1/blood , Prognosis , Proto-Oncogene Proteins/blood , S100 Calcium Binding Protein beta Subunit/blood , Prospective Studies , Infant , Adolescent
14.
J Med Virol ; 95(7): e28920, 2023 07.
Article in English | MEDLINE | ID: mdl-37386905

ABSTRACT

Currently, various problems are being faced in the treatment of influenza, so the development of new safe and effective drugs is crucial. Selenadiazole, an important component of selenium heterocyclic compounds, has received wide attention for its biological activity. This study aimed to verify the antiviral activity of 5-nitrobenzo[c][1,2,5]selenadiazole (SeD-3) in vivo and in vitro. The cell counting kit-8 assay and observation of cytopathic effect verified that SeD-3 could improve the survival of influenza A(H1N1)pdm09-infected Madin-Darby canine kidney cells. Polymerase chain reaction quantification and neuraminidase assay showed that SeD-3 could inhibit the proliferation of H1N1 virus. The time of addition assay demonstrated that SeD-3 may have a direct effect on virus particles and block some stages of H1N1 life cycle after virus adsorption. Cell cycle, JC-1, Annexin V, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling-4',6-diamidino-2-phenylindole (TUNEL-DAPI) assays showed that SeD-3 inhibited H1N1 infection-induced apoptosis. Cytokine detection demonstrated SeD-3 inhibited the production of proinflammatory factors after infection, including tumor necrosis factor-α (TNF-α), TNF-ß, interferon-γ, interleukin 12 (IL-12), and IL-17F. In vivo experiments suggested that the pathological damage in the lungs was significantly alleviated after treatment with SeD-3 by hematoxylin and eosin staining. The TUNEL assay of lung tissues indicated that SeD-3 inhibited DNA damage during H1N1 infection. Immunohistochemical assays were performed to further explore the mechanism that SeD-3 inhibited H1N1-induced apoptosis via reactive oxygen species-mediated MAPK, AKT, and P53 signaling pathways. In conclusion, SeD-3 may become a new potential anti-H1N1 influenza virus drug due to its antiviral and anti-inflammatory activity.


Subject(s)
Influenza, Human , Animals , Dogs , Humans , Inflammation/drug therapy , Oxidative Stress , Reactive Oxygen Species , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
15.
Mult Scler ; 29(6): 680-690, 2023 05.
Article in English | MEDLINE | ID: mdl-37036134

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRLs) and slowly expanding lesions (SELs) have been posited as markers of chronic active lesions (CALs). OBJECTIVE: To assess the lesion-level concordance of PRLs and SELs in MS and to characterize changes in brain tissue integrity in CALs over time. METHODS: MRIs were analyzed from a substudy of AFFINITY [NCT03222973], a phase 2 trial of opicinumab in relapsing MS. Assessments included (1) identification of SELs based on longitudinal MRIs over 72 weeks, and identification of PRLs on susceptibility-weighted imaging (SWI) filtered phase images at week 72; (2) evaluation of subject-level correlation of SEL and PRL counts, volumes, and degree of lesion-level overlap between SELs and PRLs; and (3) characterization of tissue integrity over time in overlapping and non-overlapping SELs and PRLs. RESULTS: In 41 subjects, 119 chronic PRLs and 267 SELs were detected. Of 119 (39.5%) chronic PRLs, 47 co-localized with a SEL; 46/267 (17.2%) SELs co-localized with a PRL. PRLs co-localized with SELs showed expansion and worsening microstructural damage over time. SELs with and without co-localization with PRLs showed ongoing tissue damage. CONCLUSIONS: Chronic MS lesions identified as both PRL and SEL were associated with the most severe accumulation of tissue damage. TRIAL REGISTRATION: AFFINITY [NCT03222973].


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Longitudinal Studies
16.
Environ Sci Technol ; 57(50): 21124-21135, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37990406

ABSTRACT

Machinery and equipment, integral as technology-specific capital goods, play a dual role in climate change: it acts as both a mitigator and an exacerbator due to its carbon-intensive life cycle. Despite their importance, current climate mitigation analyses often overlook these items, leaving a gap in comprehensive analyses of their material stock and environmental impacts. To address this, our research integrates input-output analysis (IOA) with dynamic material flow analysis (d-MFA) to assess the carbon and material footprints of machinery. It finds that in 2019, machinery production required 30% of global metal production and 8% of global carbon emissions. Between 2000 and 2019, the metal footprint of the stock of machinery grew twice as fast as the economy. To illustrate the global implications and scale, we spotlight key countries. China's rise in machinery material stock is noteworthy, surpassing the United States in 2008 in total amount and achieving half of the US per capita level by 2019. Our study also contrasts economic depreciation─a value-centric metric─with the tangible lifespan of machinery, revealing how much the physical size of the capital stock exceeds its book values. As physical machinery stocks saturate, new machinery can increasingly be built from metals recycled from retired machinery.


Subject(s)
Carbon Footprint , Technology , Climate Change , Carbon , China
17.
BMC Infect Dis ; 23(1): 890, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114935

ABSTRACT

BACKGROUND: Herpes simplex virus type 1 (HSV-1) infection is a common viral disease that mainly causes oral lesions, but can also cause genital lesions in some instances. Current treatments with nucleoside analogs are limited by the emergence of drug resistance. Therefore, novel anti-HSV-1 drugs are urgently needed. METHODS: In this study, we screened a library of 2080 compounds for anti-HSV-1 activity using a plaque formation assay. We selected 11 potential inhibitors of HSV-1 and further evaluated their antiviral effects by plaque reduction assay and real-time polymerase chain reaction (qPCR). RESULTS: Five compounds, namely ginsenoside Rd, brassinolide, rosamultin, 3'-hydroxy puerarin, and clinafloxacin HCl, showed potent anti-HSV-1 activity and completely suppressed plaque formation at a concentration of 10 µM. Among them, clinafloxacin HCl, a fluoroquinolone antibiotic, exhibited a high selectivity index for HSV-1. CONCLUSIONS: Our findings suggest that these five compounds have potential antiviral properties against HSV-1 and may have different mechanisms of action. Further studies are warranted to elucidate the antiviral mechanisms of these compounds and to explore their therapeutic potential for HSV-1 infection.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Chlorocebus aethiops , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Herpesvirus 2, Human , Herpes Simplex/drug therapy , Viral Plaque Assay , Vero Cells
18.
Mol Biol Rep ; 50(4): 2991-3000, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36653729

ABSTRACT

BACKGROUND: Enterovirus A71 (EV-A71)is a prevalent infection in severe hand, foot and mouth disease HFMD and can induce acute central nervous system seizures. The three EV-A71 vaccines now circulating in the market are produced for a single subtype. While EV-A71 is constantly evolving and the vaccine's efficacy is gradually reducing, no specialized anti-EV-A71 medication has yet been developed. Therefore, it is crucial to consistently develop new anti-EV-A71 medications. METHOD: Ebselen, an organoselenium molecule with glutathione oxidase-like activity, is resistant to a range of viruses. In this investigation, we used the Cell counting kit-8 (CCK-8 kit) assay in a Vero cell model to confirm the effectiveness of ebselen against EV-A71 infection. Later, to examine ebselen's anti-EV-A71 mechanism, we measured the apoptosis level of cells in different treatment groups through Annexin V, JC-1, and cell cycle assays, as well as the intracellular reactive oxygen species (ROS) concentration. Ebselen may have an impact on the apoptotic signaling pathway caused by EV-A71 infection, according to the results of a caspase-3 activity experiment. RESULT: The results showed that Ebselen protected cell damage from ROS generation, decreased the frequency of EV-A71-induced apoptosis, and inhibited caspase-3-mediated apoptosis by lowering caspase-3 activity. CONCLUSION: To summarize, ebselen is a promising anti-EV-A71 medication.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Humans , Reactive Oxygen Species , Caspase 3 , Enterovirus Infections/drug therapy , Signal Transduction , Apoptosis
19.
J Biochem Mol Toxicol ; 37(11): e23470, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37477183

ABSTRACT

Oesophageal squamous-cell carcinoma (ESCC) is a malignant tumor of the digestive system with a poor prognosis. Recent studies have shown the promoting effect of hsa_circ_0058063 (circ_0058063) on ESCC, but the potential regulatory mechanisms of circ_0058063 in ESCC remain largely unclear. The levels of circ_0058063, microRNA-4319 (miR-4319) and mRNA of thrombospondin-1 (THBS1) were indicated by quantitative real-time polymerase chain reaction in ESCC tissues and cells. Meanwhile, the level of THBS1 was quantified by western blot analysis. In addition, the cell functions were examined by CCK8 assay, Edu assay, flow cytometry assay and transwell assay. Furthermore, the interplay between miR-4319 and circ_0058063 or THBS1 was detected by dual-luciferase reporter assay. Finally, an in vivo experiment was implemented to confirm the effect of circ_0058063. The level of circ_0058063 and THBS1 were increased, and the miR-4319 level was decreased in ESCC tissues in contrast to that in normal tissues and cells. For functional analysis, circ_0058063 deficiency inhibited cell vitality, cell proliferation, migration and invasion in ESCC cells, whereas promoted cell apoptosis. Moreover, miR-4319 was confirmed to repress the progression of ESCC cells by suppressing THBS1. In mechanism, circ_0058063 acted as a miR-4319 sponge to regulate the level of THBS1. Besides, circ_0058063 knockdown also attenuated tumour growth in vivo. Circ_0058063 facilitates the development of ESCC through increasing THBS1 expression by regulating miR-4319, which also offered an underlying targeted therapy for ESCC treatment.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Esophageal Squamous Cell Carcinoma/genetics , Apoptosis , Cell Proliferation , Esophageal Neoplasms/genetics , MicroRNAs/genetics , Cell Line, Tumor
20.
J Biopharm Stat ; : 1-21, 2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38007615

ABSTRACT

Performance outcome (PerfO) measures are based on tasks performed by patients in a controlled environment, making their meaningful interpretation challenging to establish. Co-calibrating PerfO and patient-reported outcome (PRO) measures of the same target concept allow for interpretation of the PerfO with the item content of the PRO. The Rasch model applied to the discretized PerfO measure together with the PRO items allows expressing parameters related to the PerfO measure in the PRO metric for it to be linked to the PRO responses. We applied this approach to two PerfO measures used in multiple sclerosis (MS) for walking and manual ability: the Timed 25-Foot Walk (T25FW) and the 9-Hole Peg Test (9HPT). To determine meaningful interpretation of these two PerfO measures, they were co-calibrated with two PRO measures of closely related concepts, the MS walking scale - 12 items (MSWS-12) and the ABILHAND, using the data of 2,043 subjects from five global clinical trials in MS. The probabilistic relationships between the PerfO measures and the PRO metrics were used to express the response pattern to the PRO items as a function of the unit of the PerfOs. This example illustrates the promises of the co-calibration approach for the interpretation of PerfO measures but also highlights the challenges associated with it, mostly related to the quality of the PRO metric in terms of coverage of the targeted concept. Co-calibration with PRO measures could also be an adequate solution for interpretation of digital sensor measures whose meaningfulness is also often questioned.

SELECTION OF CITATIONS
SEARCH DETAIL