Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Main subject
Language
Publication year range
1.
Environ Res ; 263(Pt 2): 120060, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368594

ABSTRACT

Developing advanced strategies, including exposing active site centers, regulating coordination environments, controlling crystallographic facets, optimizing electronic structures and constructing defects for enhancing photocatalytic performance is of great significance to improving the ecosystem. In this study, a novel self-assembled bimetallic Fe/Mn-MOF with SnS2 Z-scheme heterojunction photocatalyst was designed using a facile multistep solvothermal method. Benefiting from the interfacial heterojunction synergistic effect, the photocatalysts exhibited an outstanding catalytic performance. Nearly 91.4% efficiency of tetracyclines was degraded within 80 min through the assistance of a persulfate-based advanced oxidation process. DFT calculations utilizing the Fukui index identified the sites vulnerable to attack by the active species. As demonstrated by the trapping experiments and electron spin resonance (ESR), the involved oxygen-active species (•O2- and 1O2) facilitated the rapid degradation of tetracycline. The degradation pathways were further guided in the elucidation of the rationale mechanism and the toxicity of derived intermediates was revealed. This work opens a new strategy for the rational design of bimetallic photocatalysts, emphasizing interface-modulated heterojunctions for efficient solar energy conversion.

2.
Nano Lett ; 21(22): 9587-9593, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34734718

ABSTRACT

The wettability of graphene is critical for numerous applications but is very sensitive to its surface cleanness. Herein, by clarifying the impact of intrinsic contamination, i.e., amorphous carbon, which is formed on the graphene surface during the high-temperature chemical vapor deposition (CVD) process, the hydrophilic nature of clean graphene grown on single-crystal Cu(111) substrate was confirmed by both experimental and theoretical studies, with an average water contact angle of ∼23°. Furthermore, the wettability of as-transferred graphene was proven to be highly dependent on its intrinsic cleanness, because of which the hydrophilic, clean graphene exhibited improved performance when utilized for cell culture and cryoelectron microscopy imaging. This work not only validates the intrinsic hydrophilic nature of graphene but also provides a new insight in developing advanced bioapplications using CVD-grown clean graphene films.


Subject(s)
Graphite , Cell Culture Techniques , Cryoelectron Microscopy , Graphite/chemistry , Hydrophobic and Hydrophilic Interactions , Wettability
3.
Angew Chem Int Ed Engl ; 59(39): 17214-17218, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32542959

ABSTRACT

Chemical vapor deposition (CVD) has become a promising approach for the industrial production of graphene films with appealing controllability and uniformity. However, in the conventional hot-wall CVD system, CVD-derived graphene films suffer from surface contamination originating from the gas-phase reaction during the high-temperature growth. Shown here is that the cold-wall CVD system is capable of suppressing the gas-phase reaction, and achieves the superclean growth of graphene films in a controllable manner. The as-received superclean graphene film, exhibiting improved optical and electrical properties, was proven to be an ideal candidate material used as transparent electrodes and substrate for epitaxial growth. This study provides a new promising choice for industrial production of high-quality graphene films, and the finding about the engineering of the gas-phase reaction, which is usually overlooked, will be instructive for future research on CVD growth of graphene.

4.
Nat Commun ; 15(1): 6957, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138222

ABSTRACT

The high-intactness and ultraclean fabrication of suspended 2D materials has always been a challenge due to their atomically thin nature. Here, we present a universal polymer-free transfer approach for fabricating suspended 2D materials by using volatile micro-molecule cyclododecane as the transfer medium, thus ensuring the ultraclean and intact surface of suspended 2D materials. For the fabricated monolayer suspended graphene, the intactness reaches 99% for size below 10 µm and suspended size reaches 36 µm. Owing to the advantages of ultra-cleanness and large size, the thermal conductivity reaches 4914 W m - 1 K - 1 at 338 K. Moreover, this strategy can also realize efficient batch transfer of suspended graphene and is applicable for fabricating other 2D suspended materials such as MoS2. Our research not only establishes foundation for potential applications and investigations of intrinsic properties of large-area suspended 2D materials, but also accelerates the wide applications of suspended graphene grid in ultrahigh-resolution TEM characterization.

5.
Adv Mater ; : e2308802, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878366

ABSTRACT

Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.

6.
Nat Commun ; 14(1): 3199, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268632

ABSTRACT

Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.

7.
ACS Nano ; 16(1): 285-294, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34965103

ABSTRACT

The epitaxial growth of single-crystal thin films relies on the availability of a single-crystal substrate and a strong interaction between epilayer and substrate. Previous studies have reported the roles of the substrate (e.g., symmetry and lattice constant) in determining the orientations of chemical vapor deposition (CVD)-grown graphene, and Cu(111) is considered as the most promising substrate for epitaxial growth of graphene single crystals. However, the roles of gas-phase reactants and graphene-substrate interaction in determining the graphene orientation are still unclear. Here, we find that trace amounts of oxygen is capable of enhancing the interaction between graphene edges and Cu(111) substrate and, therefore, eliminating the misoriented graphene domains in the nucleation stage. A modified anomalous grain growth method is developed to improve the size of the as-obtained Cu(111) single crystal, relying on strongly textured polycrystalline Cu foils. The batch-to-batch production of A3-size (∼0.42 × 0.3 m2) single-crystal graphene films is achieved on Cu(111) foils relying on a self-designed pilot-scale CVD system. The as-grown graphene exhibits ultrahigh carrier mobilities of 68 000 cm2 V-1 s-1 at room temperature and 210 000 cm2 V-1 s-1 at 2.2 K. The findings and strategies provided in our work would accelerate the mass production of high-quality misorientation-free graphene films.

8.
PeerJ ; 8: e8780, 2020.
Article in English | MEDLINE | ID: mdl-32211241

ABSTRACT

To determine the Dysgonia stuposa mitochondrial genome (mitogenome) structure and to clarify its phylogenetic position, the entire mitogenome of D. stuposa was sequenced and annotated. The D. stuposa mitogenome is 15,721 bp in size and contains 37 genes (protein-coding genes, transfer RNA genes, ribosomal RNA genes) usually found in lepidopteran mitogenomes. The newly sequenced mitogenome contained some common features reported in other Erebidae species, e.g., an A+T biased nucleotide composition and a non-canonical start codon for cox1 (CGA). Like other insect mitogenomes, the D. stuposa mitogenome had a conserved sequence 'ATACTAA' in an intergenic spacer between trnS2 and nad1, and a motif 'ATAGA' followed by a 20 bp poly-T stretch in the A+T rich region. Phylogenetic analyses supported D. stuposa as part of the Erebidae family and reconfirmed the monophyly of the subfamilies Arctiinae, Catocalinae and Lymantriinae within Erebidae.

SELECTION OF CITATIONS
SEARCH DETAIL