Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Environ Sci Technol ; 56(1): 119-130, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34882389

ABSTRACT

N-containing organic compounds (NOCs) in humic-like substances (HULIS) emitted from biomass burning (BB) and coal combustion (CC) were characterized by ultrahigh-resolution mass spectrometry in the positive electrospray ionization mode. Our results indicate that NOCs include CHON+ and CHN+ groups, which are detected as a substantial fraction in both BB- and CC-derived HULIS, and suggest that not only BB but also CC is the potential important source of NOCs in the atmosphere. The CHON+ compounds mainly consist of reduced nitrogen compounds with other oxygenated functional groups, and straw- and coal-smoke HULIS exhibit a lower degree of oxidation than pine-smoke HULIS. In addition, the NOCs with higher N atoms (N2 and/or N3) generally bear higher modified aromaticity index (AImod) values and are mainly contained in BB HULIS, especially in straw-smoke HULIS, whereas the NOCs with a lower N atom (N1) always have relatively lower AImod values and are the dominant NOCs in CC HULIS. These findings imply that the primary emission from CC may be a significant source of N1 compounds, whereas high N number (e.g., N2-3) compounds could be associated with burning of biomass materials. Further study is warranted to distinguish the NOCs from more sources.


Subject(s)
Air Pollutants , Coal , Aerosols/analysis , Air Pollutants/analysis , Biomass , Environmental Monitoring , Humic Substances/analysis , Nitrogen/analysis , Nitrogen Compounds/analysis , Particulate Matter/analysis
2.
J Cell Physiol ; 236(11): 7308-7321, 2021 11.
Article in English | MEDLINE | ID: mdl-33934358

ABSTRACT

Various cells within the adrenal microenvironment are important in maintaining the body homeostasis. However, our understanding of adrenal disease pathogenesis is limited by an incomplete molecular characterization of the cell types responsible for the organ's multiple homeostatic functions. We report a cellular landscape of the human adrenal gland using single-cell RNA sequencing. We reveal characteristic features of cell types within the human adrenal microenvironment and found immune activation of nonimmune cells in the adrenal endothelial cells. We also reveal that abundant immune cells occupied a lot of space in adrenal gland. Additionally, Sex-related diversity in the adrenocortical cells and different gene expression profiles between the left and right adrenal gland are also observed at single-cell resolution. Together, at single-cell resolution, the transcriptomic map presents a comprehensive view of the human adrenal gland, which serves as a fundamental baseline description of this organ and paves a way for the further studies of adrenal diseases.


Subject(s)
Adrenal Glands/metabolism , Cellular Microenvironment , Single-Cell Analysis , Transcriptome , Adrenal Glands/cytology , Adrenal Glands/immunology , Aged , Circadian Rhythm , Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Middle Aged , RNA-Seq , Sex Factors
3.
Cancer Cell Int ; 21(1): 467, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488772

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is still a serious male malignant disease across the world. However, no exact pathogenesis had been explained. Although adenylosuccinate lyase (ADSL) gene was identified to be important in PCa early in 1987, its comprehensive functions for PCa have not been presented. METHODS: The cBioPortal for Cancer Genomics, Oncomine and GEO database were retrieved to investigate the associations between of the ADSL gene and PCa. Then, the PC-3, DU145 and C4-2B cell lines were applied in vitro experiments. RNA sequencing and further western blot (WB) were applied to explore the potential mechanisms of ADSL gene in PCa. RESULTS: Based on PCa clinical datasets, we firstly found ADSL gene highly expressed in PCa tissues. Moreover, its transcript level increased in the metastatic PCa further. Elevated ADSL gene expression indicated a poor prognosis of PCa. While inhibiting the expression of ADSL with siRNA, the ability of cell proliferation and migration all declined markedly, with increased cell apoptosis inversely. Most of cells were blocked in the G0/G1 phase. Additionally, RNA sequencing also discovered the inactivity of cell cycle pathway after ADSL knockdown, which had also confirmed on the proteins levels. CONCLUSIONS: Our study identified the ADSL as an oncogene of PCa through regulating the cell cycle pathway firstly, with explicit cell and clinical phenotypes. Further mechanisms were needed to confirm its carcinogenic effect.

4.
Prostate ; 80(4): 352-364, 2020 03.
Article in English | MEDLINE | ID: mdl-31905248

ABSTRACT

BACKGROUND: Signal regulatory protein ß1 (SIRPB1) is a signal regulatory protein member of the immunoglobulin superfamily and is capable of modulating receptor tyrosine kinase-coupled signaling. Copy number variations at the SIRPB1 locus were previously reported to associate with prostate cancer aggressiveness in patients, however, the role of SIRPB1 in prostate carcinogenesis is unknown. METHODS: Fluorescence in situ hybridization and laser-capture microdissection coupled with quantitative polymerase chain reaction was utilized to determine SIRPB1 gene amplification and messenger RNA expression in prostate cancer specimens. The effect of knockdown of SIRPB1 by RNA interference in PC3 prostate cancer cells on cell growth in colony formation assays and cell mobility in wound-healing, transwell assays, and cell cycle analysis was determined. Overexpression of SIPRB1 in C4-2 prostate cancer cells on cell migration, invasion, colony formation and cell cycle progression and tumor take rate in xenografts was also determined. Western blot assay of potential downstream SIRPB1 pathways was also performed. RESULTS: SIRPB1 gene amplification was detected in up to 37.5% of prostate cancer specimens based on in silico analysis of several publicly available datasets. SIRPB1 gene amplification and overexpression were detected in prostate cancer specimens. The knockdown of SIRPB1 significantly suppressed cell growth in colony formation assays and cell mobility. SIRPB1 knockdown also induced cell cycle arrest during the G0 /G1 phase and enhancement of apoptosis. Conversely, overexpression of SIPRB1 in C4-2 prostate cancer cells significantly enhanced cell migration, invasion, colony formation, and cell cycle progression and increased C4-2 xenograft tumor take rate in nude mice. Finally, this study presented evidence for SIRPB1 regulation of Akt phosphorylation and showed that Akt inhibition could abolish SIRPB1 stimulation of prostate cancer cell proliferation. CONCLUSIONS: These results suggest that SIRPB1 is a potential oncogene capable of activating Akt signaling to stimulate prostate cancer proliferation and could be a biomarker for patients at risk of developing aggressive prostate cancer.


Subject(s)
Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Enzyme Activation , Gene Amplification , Heterografts , Humans , Male , Mice , Mice, Nude , Neural Cell Adhesion Molecules/biosynthesis , PC-3 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
5.
J Am Soc Nephrol ; 30(11): 2159-2176, 2019 11.
Article in English | MEDLINE | ID: mdl-31462402

ABSTRACT

BACKGROUND: Having a comprehensive map of the cellular anatomy of the normal human bladder is vital to understanding the cellular origins of benign bladder disease and bladder cancer. METHODS: We used single-cell RNA sequencing (scRNA-seq) of 12,423 cells from healthy human bladder tissue samples taken from patients with bladder cancer and 12,884 cells from mouse bladders to classify bladder cell types and their underlying functions. RESULTS: We created a single-cell transcriptomic map of human and mouse bladders, including 16 clusters of human bladder cells and 15 clusters of mouse bladder cells. The homology and heterogeneity of human and mouse bladder cell types were compared and both conservative and heterogeneous aspects of human and mouse bladder evolution were identified. We also discovered two novel types of human bladder cells. One type is ADRA2A+ and HRH2+ interstitial cells which may be associated with nerve conduction and allergic reactions. The other type is TNNT1+ epithelial cells that may be involved with bladder emptying. We verify these TNNT1+ epithelial cells also occur in rat and mouse bladders. CONCLUSIONS: This transcriptomic map provides a resource for studying bladder cell types, specific cell markers, signaling receptors, and genes that will help us to learn more about the relationship between bladder cell types and diseases.


Subject(s)
Single-Cell Analysis , Transcriptome , Urinary Bladder/cytology , Urinary Bladder/metabolism , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, alpha-2/analysis , Receptors, Histamine H2/analysis , Sequence Analysis, RNA , Troponin T/analysis
6.
Environ Sci Technol ; 53(23): 13607-13617, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31682114

ABSTRACT

Water-soluble organic compounds (WSOC) and methanol-soluble organic compounds (MSOC) in smoke particles emitted from residential coal combustion were characterized by ultrahigh-resolution mass spectrometry. The results showed that the molecular compositions of WSOC and MSOC are different. S-containing compounds (CHOS and CHONS) are found to be the dominant components (65-87%) of the WSOC, whereas CHO and CHON compounds make a great contribution (79-96%) to the MSOC samples. It is worth noting that greater abundance of S-containing compounds was found in smoke produced from coal combustion compared to biomass burning and atmospheric samples. The molecular compositions of WSOC and MSOC also varied significantly depending on the maturity of the coal. The WSOC and MSOC derived from the combustion of low-maturity coal contained a higher proportion of oxidized functional groups but with a lower degree of aromaticity than the compounds derived from the combustion of high-maturity coal. Our findings suggest that organic molecules with a high modified aromaticity index, low O/C ratio, and low polarity showed stronger light absorption. This study also suggests that CHO and CHON compounds significantly contributed to the light absorption of WSOC and MSOC and that the contribution of CHON may be stronger.


Subject(s)
Coal , Methanol , Cyclotrons , Fourier Analysis , Mass Spectrometry , Spectrometry, Mass, Electrospray Ionization , Water
7.
Environ Sci Technol ; 53(2): 595-603, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30584761

ABSTRACT

Brown carbon (BrC) fractions, including water-soluble organic carbon (WSOC), water-soluble humic-like substances (HULISw), alkaline soluble organic carbon (ASOC), and methanol soluble organic carbon (MSOC) were extracted from particles emitted from the residential combustion of coal with different geological maturities. The abundances and light absorption properties of these BrC fractions were comprehensively studied. The results showed that the abundances of the different constituents of the BrC fraction varied greatly with the extraction solvent, accounting for 4.3%-46%, 2.3%-23%, 3.2%-14%, and 76%-98% of the total carbon content in particles. The specific UV-vis absorbance (SUVA254) of BrC fractions followed the order of MSOC > ASOC > HULISw > WSOC. The WSOC and MSOC fractions from the combustion of low maturity coal had relatively low SUVA254 and high SR values. The mass absorption efficiencies (MAE365) for ASOC and MSOC were higher than for WSOC, and WSOC and MSOC from low maturity coal combustion had relatively low levels of light absorption. These findings indicated that coal combustion is a potential source of atmospheric BrC and the abundance and light absorption of the coal combustion-derived BrC fractions were strongly dependent on the extraction methods used and the coal maturity rather than the coal shapes.


Subject(s)
Air Pollutants , Coal , Carbon , China , Environmental Monitoring , Particulate Matter
8.
Med Sci Monit ; 23: 5176-5183, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29084195

ABSTRACT

BACKGROUND Prostate cancer (PCa) is the second most commonly diagnosed cancer in males worldwide. This study aimed to identify differentially expressed genes and to investigate the potential correlation between gene abnormalities and clinical features in PCa to evaluate disease progression and prognosis. MATERIAL AND METHODS A total of 4 independent microarrays of PCa patients from the Oncomine database were used to identify differences in expression of genes contributing to cancer progression. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis was used to evaluate the mRNA expression of the target in human prostate cancer cells. To explore the relationship between the DNA copy number alteration and mRNA expression changes, dataset containing copy number alteration, DNA methylation, and gene expression in PCa were obtained from the cBioPortal online platform (n=273). RESULTS We identified 40 genes that were significantly dysregulated in PCa from 4 independent microarrays. Among these, 3 genes showed a consistent change of over 2-fold in the 4 microarrays. The mRNA expression of C10orf116 showed consistent expression in prostate cancer cells compared with that in prostate gland cells as assessed by RT-qPCR. Moreover, C10orf116 loss was associated with poor distant relapse-free survival (DFS) by analyzing data of 273 PCa patients, but it was not identified as an independent prognostic risk factor for DFS. In addition, we found that C10orf116 loss was associated with higher pathological stage, higher clinical stage, and lymph node metastasis in PCa, and that C10orf116 copy number was highly correlated with PTEN copy number and mRNA expression. CONCLUSIONS As a predictive indicator, C10orf116 loss contributes to our understating of the biology of aggressive changes in PCa and also helps evaluate the prognosis of patients.


Subject(s)
Gene Dosage , Nuclear Proteins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Cell Line, Tumor , Computational Biology , Disease-Free Survival , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Multivariate Analysis , Neoplasm Recurrence, Local/pathology , Nuclear Proteins/metabolism , PTEN Phosphohydrolase/genetics , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Tumour Biol ; 36(11): 8811-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26058873

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a common malignancy in southern China and Southeast Asia. NPC frequently metastasizes to the bone in advanced patients resulting in high mortality. The molecular mechanisms for NPC development and cancer-induced bone lesions are unclear. In this study, we firstly determined chemokine receptor CCR2 and CXCR6 expressions in clinical specimens and CNE2, SUNE1, CNE1, and HK1 cell lines. Then, we measured chemokine CCL2 and CXCL16 production in these NPC cell lines by ELISA. Expression levels of these chemokines and their receptors were observed to positively correlate with tumor aggressiveness. Furthermore, U0126 (MEK inhibitor) was used to treat these NPC cell lines. CCL2 and CXCL16 expression levels and cell proliferation were significantly inhibited by U0126 in a dose- and time-dependent manner. Finally, we collected conditioned medium (CM) from NPC cell cultures in the presence of U0126 treatment. When mouse bone marrow non-adherent cells were treated with the CM, the numbers of multinucleated osteoclast formation were dramatically diminished. These results indicate that MEK inhibitor diminishes NPC cell proliferation and NPC-induced osteoclastogenesis via modulating CCL2 and CXCL16 expressions. This study provides novel therapeutic targets such as CCL2/CCR2 and CXCL16/CXCR6 for advanced NPC patients.


Subject(s)
Chemokine CCL2/biosynthesis , Chemokines, CXC/biosynthesis , MAP Kinase Kinase Kinases/genetics , Nasopharyngeal Neoplasms/genetics , Receptors, Scavenger/biosynthesis , Animals , Bone Marrow Cells/drug effects , Butadienes/administration & dosage , Carcinoma , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chemokine CCL2/genetics , Chemokine CXCL16 , Chemokines, CXC/genetics , Culture Media, Conditioned/pharmacology , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mice , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Nitriles/administration & dosage , Osteoclasts/drug effects , Osteoclasts/pathology , Protein Kinase Inhibitors/administration & dosage , Receptors, Scavenger/genetics
10.
Article in English | MEDLINE | ID: mdl-37604587

ABSTRACT

Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.


Subject(s)
Eukaryota , Signal Transduction , Cell Membrane , Lipids , Cholesterol
11.
BMC Med Genomics ; 16(1): 122, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277784

ABSTRACT

BACKGROUND: Some bladder-related diseases, such as bladder urinary tract infection (UTI) and bladder cancer (BCa), have significant six differences in incidence and prognosis. However, the molecular mechanisms underlying these sex differences are still not fully understood. Understanding the sex-biased differences in gene expression in normal bladder cells can help resolve these problems. METHODS: We first collected published single-cell RNA sequencing (scRNA-seq) data of normal human bladders from females and males to map the bladder transcriptomic landscape. Then, Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA) were used to determine the significant pathways that changed in the specific cell populations. The Monocle2 package was performed to reconstruct the differentiation trajectories of fibroblasts. In addition, the scMetabolism package was used to analyze the metabolic activity at the single-cell level, and the SCENIC package was used to analyze the regulatory network. RESULTS: In total, 27,437 cells passed stringent quality control, and eight main cell types in human bladder were identified according to classical markers. Sex-based differential gene expression profiles were mainly observed in human bladder urothelial cells, fibroblasts, B cells, and T cells. We found that urothelial cells in males demonstrated a higher growth rate. Moreover, female fibroblasts produced more extracellular matrix, including seven collagen genes that may mediate BCa progression. Furthermore, the results showed that B cells in female bladders exhibited more B-cell activated signals and a higher expression of immunoglobulin genes. We also found that T cells in female bladders exhibited more T-cell activated signals. These different biological functions and properties of these cell populations may correlate with sex differences in UTI and BCa, and result in different disease processes and outcomes. CONCLUSIONS: Our study provides reasonable insights for further studies of sex-based physiological and pathological disparities in the human bladder, which will contribute to the understanding of epidemiological differences in UTI and BCa.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder , Urinary Tract Infections , Humans , Prospective Studies , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Tract Infections/genetics , Single-Cell Analysis , Gene Expression Regulation , Sequence Analysis, RNA
12.
Biogerontology ; 13(2): 147-55, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22057901

ABSTRACT

This study was designed to investigate the effect of aging on the glucose metabolism on cynomolgus (Macaca fascicularis) monkeys. A total of 33 cynomolgus monkeys in three aged groups were monitored for glucose levels, serum parameters in fasting state and somatometric measurements. Intravenous glucose tolerance test (IVGTT) and insulin tolerance test (ITT) were also performed. Aging associated changes lies in the less secretion of insulin and C-peptide during IVGTT in cynomolgus monkeys. It was also found that impaired insulin sensitivity occurred in female monkeys during aging based on HOMA-IR and K(ITT) value. In addition, triglyceride level also rose with the increase of age. Less insulin secretion and impaired insulin sensitivity in female were the characteristic during the aging of cynomolgus monkeys in this study. Body mass index, weight and waist hip rate may be the relevant factors in insulin resistance of cynomolgus monkeys.


Subject(s)
Aging/blood , Blood Glucose/metabolism , Age Factors , Animals , Biomarkers/blood , Body Mass Index , Body Weight , C-Peptide/blood , Fasting/blood , Female , Glucose Tolerance Test , Insulin/blood , Insulin Resistance , Macaca fascicularis , Male , Models, Animal , Sex Factors , Time Factors , Triglycerides/blood , Waist-Hip Ratio
13.
Exp Cell Res ; 317(20): 2950-7, 2011 Dec 10.
Article in English | MEDLINE | ID: mdl-21963525

ABSTRACT

Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy.


Subject(s)
Adult Stem Cells/pathology , Cell Transformation, Neoplastic/pathology , Mesenchymal Stem Cells/pathology , Animals , Antigens, Surface/genetics , Cell Differentiation/physiology , Cell Transformation, Neoplastic/genetics , Karyotype , Macaca , Macaca fascicularis , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred NOD , Mice, SCID , Telomerase/metabolism
14.
J Genet Genomics ; 49(11): 1002-1015, 2022 11.
Article in English | MEDLINE | ID: mdl-35395421

ABSTRACT

Extensive studies have been performed to describe the phenotypic changes occurring during malignant transformation of the prostate. However, the cell types and associated changes that contribute to the development of prostate diseases and cancer remain elusive, largely due to the heterogeneous composition of prostatic tissues. Here, we conduct a comprehensive evaluation of four human prostate tissues by single-cell RNA sequencing (scRNA-seq) to analyze their cellular compositions. We identify 18 clusters of cell types, each with distinct gene expression profiles and unique features; of these, one cluster of epithelial cells (Ep) is found to be associated with immune function. In addition, we characterize a special cluster of fibroblasts and aberrant signaling changes associated with prostate cancer (PCa). Moreover, we provide insights into the epithelial changes that occur during the cellular senescence and aging. These results expand our understanding of the unique functional associations between the diverse prostatic cell types and the contributions of specific cell clusters to the malignant transformation of prostate tissues and PCa development.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/metabolism , Prostate/pathology , Transcriptome/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Cellular Senescence/genetics , Fibroblasts/metabolism , Cell Transformation, Neoplastic
15.
Cell Biol Int ; 35(5): 483-90, 2011 May.
Article in English | MEDLINE | ID: mdl-21080910

ABSTRACT

Stem/progenitor cells hold promise for alleviating/curing type 1 diabetes due to the capacity to differentiate into functional insulin-producing cells. The current study aims to assess the differentiation potential of human pancreatic IPCs (islet-derived progenitor cells). IPCs were derived from four human donors and subjected to more than 2000-fold expansion before turning into ICCs (islet-like cell clusters). The ICCs expressed ISL-1 Glut2, PDX-1, ngn3, insulin, glucagon and somatostatin at the mRNA level and stained positive for insulin and glucagon by immunofluorescence. Following glucose challenge in vitro, C-peptide was detected in the sonicated ICCs, instead of in the conditioned medium. To examine the function of the cells in vivo, IPCs or ICCs were transplanted under the renal capsule of immunodeficient mice. One month later, 19 of 28 mice transplanted with ICCs and 4 of 14 mice with IPCs produced human C-peptide detectable in blood, indicating that the in vivo environment further facilitated the maturation of ICCs. However, among the hormone-positive mice, only 9 of 19 mice with ICCs and two of four mice with IPCs were able to secrete C-peptide in response to glucose.


Subject(s)
Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/transplantation , Stem Cell Transplantation , Stem Cells/cytology , Animals , C-Peptide/metabolism , Cell Differentiation , Cells, Cultured , Gene Expression , Glucagon/genetics , Glucose/metabolism , Humans , Insulin/genetics , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred NOD , RNA, Messenger/genetics , Stem Cells/metabolism , Transplantation, Heterologous
16.
Front Physiol ; 12: 758458, 2021.
Article in English | MEDLINE | ID: mdl-35295163

ABSTRACT

A mammalian plasma membrane is a structure on which several layers of complexity are built. The first order of complexity comes from the heterogeneity of lipid-ordered domains. Gangliosides in concert with cholesterol are preferentially packed on the outer leaflet and form lipid-ordered domains, commonly known as lipid rafts. The formation and dynamics of these domains impact nearly all membrane protein functions and are an intensely studied topic. However, tools suited for lipid domain alteration are extremely limited. Currently, methyl-ß-cyclodextrin (MßCD) appears to be the most common way to disrupt lipid domains, which is believed to operate via cholesterol extraction. This significantly limits our ability in membrane biophysics research. Previously, we found that N-(3-oxo-dodecanoyl) homoserine lactone (3oc), a small signaling chemical produced by Pseudomonas aeruginosa, is highly efficient in altering lipid-ordered domains. In this study, 3oc was compared with MßCD in a series of biochemical, biophysical, and cell biological analyses. Per molarity, 3oc is more efficient than MßCD in domain alteration and appears to better retain membrane lipids after treatment. This finding will provide an essential reagent in membrane biophysics research.

17.
Front Pharmacol ; 12: 708141, 2021.
Article in English | MEDLINE | ID: mdl-34975464

ABSTRACT

Diabetes mellitus (DM) is an independent risk factor for cognitive impairment. Although the etiology of diabetic cognitive impairment is complex and multifactorial, the hippocampus neuronal apoptosis is recognized as a main cause of diabetes-induced cognitive impairment. 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) was purified from the roots of Averrhoa carambola L. Previous research demonstrated that DMDD was safe and effective in delaying some diabetic complications. However, the efficacy of DMDD to ameliorate diabetic cognitive impairment in type 2 diabetes mice has not been reported. In the present study, the behavioral evaluation was performed by Y maze and novel object recognition in db/db mice. Gene expression profiles were detected using mouse lncRNA microarray analysis in the hippocampi of db/db mice. Changes in the neurodegeneration-associated proteins and the apoptosis-related proteins were determined in both db/db mice and high glucose-treated HT22 cells by Western blotting. We observed that DMDD treatment significantly ameliorated the spatial working memory and object recognition memory impairment in db/db mice. Further study showed that neurodegeneration-associated protein tau was decreased after DMDD treatment in the hippocampi of db/db mice. Eleven lncRNAs and four mRNAs including pro-apoptotic gene Hif3a were significantly differently expressed after DMDD treatment in the hippocampi of db/db mice. The expression of Hif3a, cleaved parp, and caspase 3 proteins was significantly increased in the hippocampi of diabetic db/db mice compared with db/m control mice and then decreased after DMDD treatment. Similar beneficial effects of DMDD were observed in HG-treated HT22 cells. These data indicate that DMDD can alleviate cognitive impairment by inhibiting neuronal apoptosis through decreasing the expression of pro-apoptotic protein Hif3a. In conclusion, our study suggests that DMDD has great potential to be a new preventive and therapeutic compound for diabetic cognitive impairment.

18.
Front Pharmacol ; 12: 617555, 2021.
Article in English | MEDLINE | ID: mdl-33613291

ABSTRACT

Background: 2-Dodecyl-6-Methoxycyclohexa-2, 5-Diene-1,4-Dione (DMDD) was purified from the roots of Averrhoa carambola L. Previous research demonstrated that DMDD is a small molecular compound with significant therapeutic potential for tumors. However, the potential targets and pharmacological mechanism of DMDD to treat lung cancer has not been reported. Methods: We employed network pharmacology and experimental evaluation to reveal the pharmacological mechanism of DMDD against lung cancer. Potential therapeutic targets of DMDD were screened by PharmMapper. Differentially expressed genes (DEGs) in The Cancer Genome Atlas (TCGA) lung cancer data sets were extracted and analyzed by GEPIA2. The mechanism of DMDD against lung cancer was determined by PPI, gene ontology (GO) and KEGG pathway enrichment analysis. Survival analysis and molecular docking were employed to obtain the key targets of DMDD. Human lung cancer cell lines H1975 and PC9 were used to detect effects of DMDD treatment in vitro. The expression of key targets after DMDD treated was validated by Western Blot. Results: A total of 60 Homo sapiens potential therapeutic targets of DMDD and 3,545 DEGs in TCGA lung cancer datasets were identified. Gene ontology and pathway analysis revealed characteristic of the potential targets of DMDD and DEGs in lung cancer respectively. Cell cycle and pathways in cancer were overlapping with DMDD potential targets and lung cancer DEGs. Eight overlapping genes were found between DMDD potential therapeutic targets and lung cancer related DEGs. Survival analysis showed that high expression of DMDD potential targets CCNE1 and E2F1 was significantly related to poor patient survival in lung cancer. Molecular docking found that DMDD exhibited significant binding affinities within the active site of CCNE1 and E2F1. Further tests showed that DMDD inhibited the proliferation, migration and clone formation in lung cancer cell lines (H1975 and PC9) in a dose and time dependent manner. Mechanistically, DMDD treatment decreased the expression of CDK2, CCNE1, E2F1 proteins and induced cell cycle arrest at the G1/S phase in H1975 and PC9 cells. Conclusion: These results delineated that DMDD holds therapeutic potential that blocks tumorigenesis by cell cycle regulation in lung cancer, and may provide potential therapies for lung cancer.

19.
Cell Biol Int ; 34(5): 523-30, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20128772

ABSTRACT

E2 (oestradiol-17beta) is an important hormone that regulates various cell functions including insulin production. hIPCs (human islet-derived precursor cells) are capable of proliferating and differentiating into cells that secrete insulin in response to glucose in vivo and in vitro. However, the effect of E2 on hIPCs is currently unclear. In this study, we found that ERalpha (oestrogen receptor alpha), but not ERbeta, was expressed on hIPCs, and E2 promoted the proliferation and inhibited the differentiation of adult hIPCs. Although fetal hIPCs also express ERalpha, no effect of E2 on the fetal hIPCs was observed, suggesting differing roles of E2 at different stages of pancreatic development. This study indicates that E2 may be one of the key factors that control the turnover of adult pancreatic beta cells by regulating the proliferation and differentiation of adult hIPCs through ERalpha.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Islets of Langerhans/drug effects , Stem Cells/drug effects , Stem Cells/physiology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Estrogen Receptor beta/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Islets of Langerhans/physiology , Stem Cells/cytology , Stem Cells/metabolism
20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 32(4): 445-8, 2010 Aug.
Article in Zh | MEDLINE | ID: mdl-20868608

ABSTRACT

OBJECTIVE: To trace the embryonic stem (ES) cells transplanted into rat brain by labeling the cells with green fluorescent protein (GFP) and by mouse neuronal specific antibody Thy-1 and compare their features. METHODS: For GFP labeling,transfect pEGFP-N1 plasmid containing GFP and anti-neomycin sequences into embryonic stem cell and add neomycin for more than 10 passages. To test the GFP expression in vivo, the GFP-ES was transplanted into healthy rat brain, and the frozen sectioned slides were observed under fluorescence microscope and laser con-focal microscope 21 days later. For the antibody labeling,embryonic stem cells were directly transplanted into the rat brain. The specific mouse thy-1 antibody was used in immunostaining of transplanted cells. For both of the two labeling method, the slides were also examined by double labeling with the antibodies,neuronal nuclei (NeuN) or glial fibrillary acidic protein (GFAP) to identify the differentiation of transplanted cells. RESULTS: Both single ES cell and cell pellets expressed bright green fluorescence the day after plasmid transfection, and more than 30% ES cells were labeled. The GFP-labeled cells could still be found gathered around the infusion channel at least 21 days later, but the GFP fluorescent could not be overlapped with NeuN or GFAP staining. On the contrary, Thy-1 antibody overlapped well with NeuN or GFAP staining. CONCLUSIONS: Liposome-helped plasmid GPF transfection is effective in labeling mouse embryonic stem cell in vivo,but is not effective in showing the differentiated cells. On the contrary, Thy-1 antibody can not only show the transplanted cells, but also trace the transplanted cells after their differentiation.


Subject(s)
Embryonic Stem Cells/transplantation , Staining and Labeling/methods , Animals , Cell Differentiation/physiology , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Green Fluorescent Proteins , Male , Mice , Mice, Transgenic , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL