Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Immunity ; 54(7): 1543-1560.e6, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34004141

ABSTRACT

Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.


Subject(s)
Amino Acid Transport System y+/immunology , Cell Proliferation/physiology , T-Lymphocytes, Regulatory/immunology , Adult , Autoimmunity/immunology , Cells, Cultured , Female , Homeostasis/immunology , Humans , Immune Tolerance/immunology , Male , Multiple Sclerosis, Relapsing-Remitting/immunology , NF-E2-Related Factor 2/immunology
2.
Proc Natl Acad Sci U S A ; 116(31): 15625-15634, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31308239

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is an inflammatory condition associated with abnormal immune responses, leading to airflow obstruction. Lungs of COPD subjects show accumulation of proinflammatory T helper (Th) 1 and Th17 cells resembling that of autoreactive immune responses. As regulatory T (Treg) cells play a central role in the control of autoimmune responses and their generation and function are controlled by the adipocytokine leptin, we herein investigated the association among systemic leptin overproduction, reduced engagement of glycolysis in T cells, and reduced peripheral frequency of Treg cells in different COPD stages. These phenomena were also associated with an impaired capacity to generate inducible Treg (iTreg) cells from conventional T (Tconv) cells. At the molecular level, we found that leptin inhibited the expression of forkhead-boxP3 (FoxP3) and its splicing variants containing the exon 2 (FoxP3-E2) that correlated inversely with inflammation and weakened lung function during COPD progression. Our data reveal that the immunometabolic pathomechanism leading to COPD progression is characterized by leptin overproduction, a decline in the expression of FoxP3 splicing forms, and an impairment in Treg cell generation and function. These results have potential implications for better understanding the autoimmune-like nature of COPD and the pathogenic events leading to lung damage.


Subject(s)
Alternative Splicing/immunology , Forkhead Transcription Factors , Leptin , Pulmonary Disease, Chronic Obstructive , T-Lymphocytes, Regulatory , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/immunology , Humans , Leptin/biosynthesis , Leptin/immunology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology
3.
J Immunol ; 203(7): 1753-1765, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31462505

ABSTRACT

Chronic neuroinflammation is a key pathological hallmark of multiple sclerosis (MS) that suggests that resolution of inflammation by specialized proresolving molecules is dysregulated in the disease. Annexin A1 (ANXA1) is a protein induced by glucocorticoids that facilitates resolution of inflammation through several mechanisms that include an inhibition of leukocyte recruitment and activation. In this study, we investigated the ability of ANXA1 to influence T cell effector function in relapsing/remitting MS (RRMS), an autoimmune disease sustained by proinflammatory Th1/Th17 cells. Circulating expression levels of ANXA1 in naive-to-treatment RRMS subjects inversely correlated with disease score and progression. At the cellular level, there was an impaired ANXA1 production by CD4+CD25- conventional T and CD4+RORγt+ T (Th17) cells from RRMS subjects that associated with an increased migratory capacity in an in vitro model of blood brain barrier. Mechanistically, ANXA1 impaired monocyte maturation secondarily to STAT3 hyperactivation and potently reduced T cell activation, proliferation, and glycolysis. Together, these findings identify impaired disease resolution pathways in RRMS caused by dysregulated ANXA1 expression that could represent new potential therapeutic targets in RRMS.


Subject(s)
Annexin A1/immunology , Gene Expression Regulation/immunology , Lymphocyte Activation , Multiple Sclerosis/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Adult , Cell Proliferation , Female , Glycolysis/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Multiple Sclerosis/pathology , STAT3 Transcription Factor/immunology , Severity of Illness Index , Th1 Cells/pathology , Th17 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL