Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Environ Microbiol ; 19(9): 3745-3754, 2017 09.
Article in English | MEDLINE | ID: mdl-28752915

ABSTRACT

Salar de Uyuni (SdU), with a geological history that reflects 50 000 years of climate change, is the largest hypersaline salt flat on Earth and is estimated to be the biggest lithium reservoir in the world. Its salinity reaches saturation levels for NaCl, a kosmotropic salt, and high concentrations of MgCL2 and LiCl, both salts considered important chaotrophic stressors. In addition, extreme temperatures, anoxic conditions, high UV irradiance, high albedo and extremely low concentrations of phosphorous, make SdU a unique natural extreme environment in which to contrast hypotheses about limiting factors of life diversification. Geophysical studies of brines from different sampling stations show that water activity is rather constant along SdU. Geochemical measurements show significant differences in magnesium concentration, ranging from 0.2 to 2M. This work analyses the prokaryotic diversity and community structure at four SdU sampling stations, selected according to their location and ionic composition. Prokaryotic communities were composed of both Archaea (with members of the classes Halobacteria, Thermoplasmata and Nanohaloarchaea, from the Euryarchaeota and Nanohaloarcheota phyla respectively) and Bacteria (mainly belonging to Bacteroidetes and Proteobacteria phyla). The important differences in composition of microbial communities inversely correlate with Mg2+ concentration, suggesting that prokaryotic diversity at SdU is chaotropic dependent.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Extreme Environments , Archaea/genetics , Bacteria/genetics , Biodiversity , Bolivia , Lithium Chloride/analysis , Magnesium Chloride/analysis , RNA, Ribosomal, 16S/genetics , Salinity , Salts/analysis , Sodium Chloride/analysis
2.
Cell Microbiol ; 14(10): 1522-30, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22747789

ABSTRACT

Trypanosoma cruzi trans-sialidase (TS) was identified three decades ago. TS catalyses a trans-glycosylation reaction, transferring SA from sialylated donors to the terminal galactose mucin-glycoconjugates, or non-mucin galactyosyl-glycoconjugates. It is an external surface protein that is also released from the parasite, displaying several binding properties in addition to its enzymatic function. TS structure has been solved and its catalytic properties are well known, providing tools for development of new inhibitors, as potential chemotherapeutic agents against Chagas' disease. However, there are still several unsolved questions regarding TS role in the biology of T. cruzi and in the pathology of Chagas' disease. In this review, we will describe the multifunctional roles of TS regarding the development of Chagas' disease and propose that these multiple functions have to be considered in future investigations aiming to use TS as a drug target.


Subject(s)
Chagas Disease/parasitology , Glycoproteins/metabolism , Neuraminidase/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/pathogenicity , Virulence Factors/metabolism , Glycoproteins/chemistry , Humans , Neuraminidase/chemistry , Protein Conformation , Virulence Factors/chemistry
3.
Environ Technol ; 36(19): 2477-87, 2015.
Article in English | MEDLINE | ID: mdl-25827614

ABSTRACT

The anaerobic ammonium oxidation (anammox) process is widely used for N-rich wastewater treatment. In the current research the deammonification reactor in a reverse order (first anammox, then the nitrifying biofilm cultivation) was started up with a high maximum N removal rate (1.4 g N m(-2) d(-1)) in a moving bed biofilm reactor. Cultivated biofilm total nitrogen removal rates were accelerated the most by anammox intermediate - nitric oxide (optimum 58 mg NO-N L(-1)) addition. Furthermore, NO was added in order to eliminate inhibition caused by nitrite concentrations (>50 mg [Formula: see text]) increasing [Formula: see text] (2/1, respectively) along with a higher ratio of [Formula: see text] (0.6/1, respectively) than stoichiometrical for this optimal NO amount added during batch tests. Planctomycetales clone P4 sequences, which was the closest (98% and 99% similarity, respectively) relative to Candidatus Brocadia fulgida sequences quantities increase to 1 × 10(6) anammox gene copies g(-1) total suspended solids to till day 650 were determined by quantitative polymerase chain reaction.


Subject(s)
Ammonium Compounds/metabolism , Biofilms , Nitric Oxide/metabolism , Nitrites/metabolism , Planctomycetales/physiology , Anaerobiosis , Bioreactors , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL