Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Cell Microbiol ; 21(10): e13066, 2019 10.
Article in English | MEDLINE | ID: mdl-31173452

ABSTRACT

Free-living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose-binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose-binding proteins, Ac-fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.


Subject(s)
Acanthamoeba castellanii/metabolism , Fungi/pathogenicity , Mannose-Binding Lectin/metabolism , Acanthamoeba castellanii/chemistry , Acanthamoeba castellanii/microbiology , Acanthamoeba castellanii/ultrastructure , Animals , Candida albicans/pathogenicity , Candida albicans/ultrastructure , Concanavalin A/metabolism , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/ultrastructure , Histoplasma/pathogenicity , Histoplasma/ultrastructure , Host-Pathogen Interactions , Larva/microbiology , Lepidoptera/microbiology , Mannose/chemistry , Mannose/metabolism , Mannose-Binding Lectin/chemistry , Mass Spectrometry , Microscopy, Electron, Scanning , Paracoccidioides/pathogenicity , Paracoccidioides/ultrastructure , Saccharomyces cerevisiae/pathogenicity , Saccharomyces cerevisiae/ultrastructure , Time Factors , Time-Lapse Imaging , Virulence , Virulence Factors/metabolism
2.
Parasitol Res ; 117(12): 3781-3790, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30215138

ABSTRACT

The taeniasis/cysticercosis complex is a zoonosis caused by the presence of the parasite Taenia solium in humans. It is considered a neglected disease that causes serious public health and economic problems in developing countries. In humans, the most common locations for the larval form are the skeletal muscles, ocular system, and the central nervous system, which is the most clinically important. Several glycoproteins of T. solium and Taenia crassiceps cysticerci have been characterized and studied for their use in the immunodiagnosis of neurocysticercosis and/or the development of synthetic or recombinant vaccines against cysticercosis. The aim of this study was to perform a gel-free shotgun proteomic analysis to identify saline vesicular extract (SVE) proteins of T. solium and T. crassiceps cysticerci. After solubilization of the SVE with and without surfactant reagent and in-solution digestion, the proteins were analyzed by LC-MS/MS. Use of a surfactant resulted in a significantly higher number of proteins that were able to be identified by LC-MS/MS. Novel proteins were identified in T. solium and T. crassiceps SVE. The qualitative analysis revealed a total of 79 proteins in the Taenia species: 29 in T. solium alone, 11 in T. crassiceps alone, and 39 in both. These results are an important contribution to support future investigations and for establishing a Taenia proteomic profile to study candidate biomarkers involved in the diagnosis or pathogenesis of neurocysticercosis.


Subject(s)
Cell Extracts/analysis , Cysticercus/metabolism , Proteome/analysis , Protozoan Proteins/analysis , Protozoan Proteins/immunology , Taenia solium/metabolism , Animals , Antigens, Helminth , Central Nervous System/parasitology , Chromatography, Liquid , Cysticercus/genetics , Cysticercus/immunology , Developing Countries , Gene Expression Profiling , Humans , Larva/metabolism , Muscle, Skeletal/parasitology , Neglected Diseases/parasitology , Neurocysticercosis/diagnosis , Neurocysticercosis/parasitology , Proteomics , Public Health , Taenia solium/genetics , Taenia solium/immunology , Taeniasis/diagnosis , Taeniasis/parasitology , Zoonoses/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL