Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Eur J Nucl Med Mol Imaging ; 50(7): 1954-1973, 2023 06.
Article in English | MEDLINE | ID: mdl-36702928

ABSTRACT

PURPOSE: To give a comprehensive literature overview of alterations in regional cerebral glucose metabolism, measured using [18F]FDG PET, in conditions associated with hyperkinetic movement disorders and ataxia. In addition, correlations between glucose metabolism and clinical variables as well as the effect of treatment on glucose metabolism are discussed. METHODS: A systematic literature search was performed according to PRISMA guidelines. Studies concerning tremors, tics, dystonia, ataxia, chorea, myoclonus, functional movement disorders, or mixed movement disorders due to autoimmune or metabolic aetiologies were eligible for inclusion. A PubMed search was performed up to November 2021. RESULTS: Of 1240 studies retrieved in the original search, 104 articles were included. Most articles concerned patients with chorea (n = 27), followed by ataxia (n = 25), dystonia (n = 20), tremor (n = 8), metabolic disease (n = 7), myoclonus (n = 6), tics (n = 6), and autoimmune disorders (n = 5). No papers on functional movement disorders were included. Altered glucose metabolism was detected in various brain regions in all movement disorders, with dystonia-related hypermetabolism of the lentiform nuclei and both hyper- and hypometabolism of the cerebellum; pronounced cerebellar hypometabolism in ataxia; and striatal hypometabolism in chorea (dominated by Huntington disease). Correlations between clinical characteristics and glucose metabolism were often described. [18F]FDG PET-showed normalization of metabolic alterations after treatment in tremors, ataxia, and chorea. CONCLUSION: In all conditions with hyperkinetic movement disorders, hypo- or hypermetabolism was found in multiple, partly overlapping brain regions, and clinical characteristics often correlated with glucose metabolism. For some movement disorders, [18F]FDG PET metabolic changes reflected the effect of treatment.


Subject(s)
Chorea , Dystonia , Movement Disorders , Myoclonus , Tics , Humans , Fluorodeoxyglucose F18 , Chorea/diagnostic imaging , Tremor , Hyperkinesis , Ataxia , Movement Disorders/diagnostic imaging , Glucose/metabolism
2.
J Physiol ; 599(8): 2283-2298, 2021 04.
Article in English | MEDLINE | ID: mdl-33687081

ABSTRACT

KEY POINTS: Gait-related arm swing in humans supports efficient lower limb muscle activation, indicating a neural coupling between the upper and lower limbs during gait. Intermuscular coherence analyses of gait-related electromyography from upper and lower limbs in 20 healthy participants identified significant coherence in alpha and beta/gamma bands indicating that upper and lower limbs share common subcortical and cortical drivers that coordinate the rhythmic four-limb gait pattern. Additional directed connectivity analyses revealed that upper limb muscles drive and shape lower limb muscle activity during gait via subcortical and cortical pathways and to a lesser extent vice versa. The results provide a neural underpinning that arm swing may serve as an effective rehabilitation therapy concerning impaired gait in neurological diseases. ABSTRACT: Human gait benefits from arm swing, as it enhances efficient lower limb muscle activation in healthy participants as well as patients suffering from neurological impairment. The underlying neuronal mechanisms of such coupling between upper and lower limbs remain poorly understood. The aim of the present study was to examine this coupling by intermuscular coherence analysis during gait. Additionally, directed connectivity analysis of this coupling enabled assessment of whether gait-related arm swing indeed drives lower limb muscles. To that end, electromyography recordings were obtained from four lower limb muscles and two upper limb muscles bilaterally, during gait, of 20 healthy participants (mean (SD) age 67 (6.8) years). Intermuscular coherence analysis revealed functional coupling between upper and lower limb muscles in the alpha and beta/gamma band during muscle specific periods of the gait cycle. These effects in the alpha and beta/gamma bands indicate involvement of subcortical and cortical sources, respectively, that commonly drive the rhythmic four-limb gait pattern in an efficiently coordinated fashion. Directed connectivity analysis revealed that upper limb muscles drive and shape lower limb muscle activity during gait via subcortical and cortical pathways and to a lesser extent vice versa. This indicates that gait-related arm swing reflects the recruitment of neuronal support for optimizing the cyclic movement pattern of the lower limbs. These findings thus provide a neural underpinning for arm swing to potentially serve as an effective rehabilitation therapy concerning impaired gait in neurological diseases.


Subject(s)
Arm , Gait , Aged , Electromyography , Humans , Lower Extremity , Muscle, Skeletal , Muscles
4.
J Sex Med ; 12(9): 1865-77, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26293889

ABSTRACT

INTRODUCTION: Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally targeting the inguinal area. Most TOMAX-treated SB patients initially experience penile stimulation as inguinal sensation, but eventually, the perception shifts to penis sensation with erotic feelings. The brain mechanisms mediating this perceptual shift, which are completely unknown, could hold relevance for understanding the brain's role in sexual development. AIM: The aim of this study was to study how a newly perceived penis would be mapped onto the brain after a lifelong disconnection. METHODS: Three TOMAX-treated SB patients participated in a functional magnetic resonance imagery experiment while glans penis, inguinal area, and index finger were stimulated with a paint brush. MAIN OUTCOME MEASURE: Brush stimulation-induced activation of the primary somatosensory cortex (SI) and functional connectivity between SI and remote cerebral regions. RESULTS: Stimulation of the re-innervated side of the glans penis and the intact contralateral inguinal area activated a very similar location on SI. Yet, connectivity analysis identified distinct SI functional networks. In all three subjects, the middle cingulate cortex (MCC) and the parietal operculum-insular cortex (OIC) were functionally connected to SI activity during glans penis stimulation, but not to SI activity induced by inguinal stimulation. CONCLUSIONS: Investigating central somatosensory network activity to a de novo innervated penis in SB patients is feasible and informative. The consistent involvement of MCC and OIC above and beyond the brain network expected on the basis of inguinal stimulation suggests that these areas mediate the novel penis sensation in these patients. The potential role of MCC and OIC in this process is discussed, along with recommendations for further research.


Subject(s)
Cerebral Cortex/physiopathology , Gyrus Cinguli/physiopathology , Penis/innervation , Penis/surgery , Spinal Dysraphism/physiopathology , Urologic Surgical Procedures, Male , Adult , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Quality of Life , Recovery of Function , Sensory Thresholds , Spinal Dysraphism/psychology , Spinal Dysraphism/surgery , Touch
5.
Eur J Neurosci ; 40(6): 2980-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24945328

ABSTRACT

Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information from both hemispheres for goal-directed movement. This was assessed by probabilistic tractography and a novel analysis enabling group comparisons of whole-brain connectivity distributions of the left and right PMd in standard space (16 human subjects). The resulting dominance of contralateral PMd connections was characterized by right PMd connections with left visual and parietal areas, indeed supporting a dominant role in visuomotor transformations, while the left PMd showed dominant contralateral connections with the frontal lobe. Ipsilateral right PMd connections were also stronger with posterior parietal regions, relative to the left PMd connections, while ipsilateral connections of the left PMd were stronger with, particularly, the anterior cingulate, the ventral premotor and anterior parietal cortex. The pattern of dominant right PMd connections thus points to a specific role in guiding perceptual information into the motor system, while the left PMd connections are consistent with action dominance based on a lead in motor intention and fine precision skills.


Subject(s)
Functional Laterality , Motor Cortex/anatomy & histology , Adult , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Motion Perception , Motor Activity , Neural Pathways/anatomy & histology
6.
Neurodegener Dis ; 14(3): 125-32, 2014.
Article in English | MEDLINE | ID: mdl-25138823

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is characterized by specific motor and nonmotor impairments. This suggests that PD is characterized by disease-specific regional cortical atrophy. Given the change of symptoms over time, a concurrent increase in regional atrophy may further be assumed to reflect the dynamic process of disease progression. METHODS: In this study we retrospectively collected T1-weighted MRI scans from previous studies performed in our center, enabling the comparison of gray matter atrophy in 77 PD patients with 87 controls using voxel-based morphometry (VBM). This large VBM analysis provided the opportunity to investigate cortical atrophy in relation with disease progression. RESULTS: We found significant PD-related reductions of gray matter density bilaterally in the anterior temporal cortex, the left inferior frontal and left extrastriate visual cortex, independent from normal aging. The anterior temporal cortex did not show major progression, whereas particularly the posterior parts of the lateral temporal cortex and adjacent extrastriate visual cortex occurred at a later stage of disease. CONCLUSIONS: Temporal pole atrophy as an early sign of PD is consistent with the PD pathology classification of Braak. The initial anterior temporal atrophy with spread to occipitotemporal and posterior parietal regions may subserve 'emotion-based' sensorimotor transformations and deficits in the visual domain, respectively, which may be regarded as premotor symptoms.


Subject(s)
Parkinson Disease/pathology , Temporal Lobe/pathology , Visual Cortex/pathology , Aged , Aging/pathology , Atrophy , Disease Progression , Female , Frontal Lobe/pathology , Gray Matter/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Parietal Lobe/pathology
8.
Mov Disord ; 28(4): 547-51, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23483593

ABSTRACT

BACKGROUND: The objective of this study was to validate disease-related metabolic brain patterns for Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. METHODS: The study included 20 patients with Parkinson's disease, 21 with multiple system atrophy, and 17 with progressive supranuclear palsy, all of whom had undergone a clinically motivated [18F]-fluoro-deoxyglucose positron emission tomography scan at an early stage of their disease. At a follow-up time after the scan of 2-4 years, a clinical diagnosis was made according to established clinical research criteria. Patient groups were compared with 18 healthy controls using a multivariate covariance image analysis technique called scaled subprofile model/principal component analysis. RESULTS: Disease-related metabolic brain patterns for these parkinsonian disorders were identified. Validation showed that these patterns were highly discriminative of the 3 disorders. CONCLUSIONS: Early diagnosis of parkinsonian disorders is feasible when the expression of disease-related metabolic brain patterns is quantified at a single-subject level.


Subject(s)
Brain Mapping , Brain/metabolism , Parkinsonian Disorders/metabolism , Aged , Brain/physiopathology , Female , Fluorodeoxyglucose F18 , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Multiple System Atrophy/diagnosis , Multiple System Atrophy/metabolism , Parkinsonian Disorders/diagnosis , Parkinsonian Disorders/physiopathology , Positron-Emission Tomography/methods , Supranuclear Palsy, Progressive/diagnosis , Supranuclear Palsy, Progressive/metabolism
9.
J Head Trauma Rehabil ; 28(2): 141-3, 2013.
Article in English | MEDLINE | ID: mdl-22333679

ABSTRACT

The demonstration by Monti et al. (2010) of willful modulation of brain activity in persistent vegetative state implies the exceptional condition of a "complete motor locked-in syndrome." As a consequence, the contradictory character of the diagnosis minimally conscious state should be recognized because behaviorally observed minimal cognitive responsiveness does not exclude a higher level of well-differentiated self-consciousness. Introduction of the descriptive entities "complete motor locked-in syndrome" and "minimal cognitive responsiveness" is therefore advocated in the service of diagnostic precision.


Subject(s)
Awareness , Persistent Vegetative State/psychology , Terminology as Topic , Communication , Humans , Imagination , Magnetic Resonance Imaging
10.
Neuroimage Clin ; 39: 103475, 2023.
Article in English | MEDLINE | ID: mdl-37494757

ABSTRACT

BACKGROUND: Brain imaging with [18F]FDG-PET can support the diagnostic work-up of patients with α-synucleinopathies. Validated data analysis approaches are necessary to evaluate disease-specific brain metabolism patterns in neurodegenerative disorders. This study compared the univariate Statistical Parametric Mapping (SPM) single-subject procedure and the multivariate Scaled Subprofile Model/Principal Component Analysis (SSM/PCA) in a cohort of patients with α-synucleinopathies. METHODS: We included [18F]FDG-PET scans of 122 subjects within the α-synucleinopathy spectrum: Parkinson's Disease (PD) normal cognition on long-term follow-up (PD - low risk to dementia (LDR); n = 28), PD who developed dementia on clinical follow-up (PD - high risk of dementia (HDR); n = 16), Dementia with Lewy Bodies (DLB; n = 67), and Multiple System Atrophy (MSA; n = 11). We also included [18F]FDG-PET scans of isolated REM sleep behaviour disorder (iRBD; n = 51) subjects with a high risk of developing a manifest α-synucleinopathy. Each [18F]FDG-PET scan was compared with 112 healthy controls using SPM procedures. In the SSM/PCA approach, we computed the individual scores of previously identified patterns for PD, DLB, and MSA: PD-related patterns (PDRP), DLBRP, and MSARP. We used ROC curves to compare the diagnostic performances of SPM t-maps (visual rating) and SSM/PCA individual pattern scores in identifying each clinical condition across the spectrum. Specifically, we used the clinical diagnoses ("gold standard") as our reference in ROC curves to evaluate the accuracy of the two methods. Experts in movement disorders and dementia made all the diagnoses according to the current clinical criteria of each disease (PD, DLB and MSA). RESULTS: The visual rating of SPM t-maps showed higher performance (AUC: 0.995, specificity: 0.989, sensitivity 1.000) than PDRP z-scores (AUC: 0.818, specificity: 0.734, sensitivity 1.000) in differentiating PD-LDR from other α-synucleinopathies (PD-HDR, DLB and MSA). This result was mainly driven by the ability of SPM t-maps to reveal the limited or absent brain hypometabolism characteristics of PD-LDR. Both SPM t-maps visual rating and SSM/PCA z-scores showed high performance in identifying DLB (DLBRP = AUC: 0.909, specificity: 0.873, sensitivity 0.866; SPM t-maps = AUC: 0.892, specificity: 0.872, sensitivity 0.910) and MSA (MSARP: AUC: 0.921, specificity: 0.811, sensitivity 1.000; SPM t-maps: AUC: 1.000, specificity: 1.000, sensitivity 1.000) from other α-synucleinopathies. PD-HDR and DLB were comparable for the brain hypo and hypermetabolism patterns, thus not allowing differentiation by SPM t-maps or SSM/PCA. Of note, we found a gradual increase of PDRP and DLBRP expression in the continuum from iRBD to PD-HDR and DLB, where the DLB patients had the highest scores. SSM/PCA could differentiate iRBD from DLB, reflecting specifically the differences in disease staging and severity (AUC: 0.938, specificity: 0.821, sensitivity 0.941). CONCLUSIONS: SPM-single subject maps and SSM/PCA are both valid methods in supporting diagnosis within the α-synucleinopathy spectrum, with different strengths and pitfalls. The former reveals dysfunctional brain topographies at the individual level with high accuracy for all the specific subtype patterns, and particularly also the normal maps; the latter provides a reliable quantification, independent from the rater experience, particularly in tracking the disease severity and staging. Thus, our findings suggest that differences in data analysis approaches exist and should be considered in clinical settings. However, combining both methods might offer the best diagnostic performance.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Humans , Synucleinopathies/diagnostic imaging , Synucleinopathies/metabolism , Fluorodeoxyglucose F18/metabolism , Brain/diagnostic imaging , Brain/metabolism , Parkinson Disease/metabolism , Alzheimer Disease/metabolism , Multiple System Atrophy/diagnostic imaging , Positron-Emission Tomography/methods , Multivariate Analysis , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism
11.
Neuroimage Clin ; 37: 103302, 2023.
Article in English | MEDLINE | ID: mdl-36669351

ABSTRACT

BACKGROUND: Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES: Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS: A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS: Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION: Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.


Subject(s)
Chorea , Dystonia , Dystonic Disorders , Myoclonus , Tics , Humans , Tremor , Magnetic Resonance Imaging , Hyperkinesis/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping/methods , Ataxia , Neural Pathways
12.
Mov Disord ; 27(2): 206-10, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21994149

ABSTRACT

Parkinson's disease (PD) characteristically presents with asymmetrical symptoms, contralateral to the side of the most extensive cerebral affection. This intriguing asymmetry, even included in the definition for diagnosing PD, however, is still part of a mystery. The relation with handedness as a common indicator of cerebral asymmetry might provide a clue in the search for causal factors of asymmetrical symptom onset in PD. This possible relationship, however, is still under debate. The objective of this study was to establish whether a relation between handedness and dominant PD side exists. We searched for cross-sectional or cohort studies that registered handedness and onset side in PD patients in PubMed, EMBASE, and Web of Science from their first record until 14 February 2011. Data about handedness and dominant PD side was extracted. Authors who registered both but not described their relation were contacted for further information. Odds ratios (ORs) were analyzed with a fixed effect Mantel-Haenszel model. Heterogeneity and indications of publication bias were limited. Our electronic search identified 10 studies involving 4405 asymmetric PD patients. Of the right-handed patients, 2413 (59.5%) had right-dominant and 1644 (40.5%) had left-dominant PD symptoms. For the left-handed patients this relation was reversed, with 142 (40.8%) right-dominant and 206 (59.2%) left-dominant PD symptoms. Overall OR was 2.13 (95% confidence interval [CI], 1.71-2.66). Handedness and symptom dominance in PD are firmly related with each other in such a way that the PD symptoms emerge more often on the dominant hand-side. Possible causal factors are discussed.


Subject(s)
Functional Laterality/physiology , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Humans
13.
Clin Neurophysiol ; 134: 65-72, 2022 02.
Article in English | MEDLINE | ID: mdl-34979292

ABSTRACT

OBJECTIVE: To explore to what extent neuronal coupling between upper and lower limb muscles during gait is preserved or affected in patients with Parkinson's Disease (PD). METHODS: Electromyography recordings were obtained from the bilateral deltoideus anterior and bilateral rectus femoris and biceps femoris muscles during overground gait in 20 healthy participants (median age 69 years) and 20 PD patients (median age 68.5 years). PD patients were able to walk independently (Hoehn and Yahr scale: Stage 2-3), had an equally distributed symptom laterality (6 left side, 7 both sides and 7 right side) and no cognitive problems or tremor dominant PD. Time-dependent directional intermuscular coherence analysis was employed to compare the neural coupling between upper and lower limb muscles between healthy participants and PD patients in three different directions: zero-lag (i.e. common driver), forward (i.e. shoulders driving the legs) and reverse component (i.e. legs driving the shoulders). RESULTS: Compared to healthy participants, PD patients exhibited (i) reduced intermuscular zero-lag coherence in the beta/gamma frequency band during end-of-stance and (ii) enhanced forward as well as reverse directed coherence in the alpha and beta/gamma frequency bands around toe-off. CONCLUSIONS: PD patients had a reduced common cortical drive to upper and lower limb muscles during gait, possibly contributing to disturbed interlimb coordination. Enhanced bidirectional coupling between upper and lower limb muscles on subcortical and transcortical levels in PD patients suggests a mechanism of compensation. SIGNIFICANCE: These findings provide support for the facilitating effect of arm swing instructions in PD gait.


Subject(s)
Gait/physiology , Lower Extremity/physiopathology , Muscle, Skeletal/physiopathology , Parkinson Disease/physiopathology , Upper Extremity/physiopathology , Walking/physiology , Aged , Aged, 80 and over , Electromyography , Female , Humans , Male , Middle Aged , Neural Pathways/physiopathology
14.
Gait Posture ; 92: 290-293, 2022 02.
Article in English | MEDLINE | ID: mdl-34896841

ABSTRACT

BACKGROUND: Human bipedal gait benefits from arm swing, as it drives and shapes lower limb muscle activity in healthy participants as well as patients suffering from neurological impairment. Also during gait initiation, arm swing instructions were found to facilitate leg muscle recruitment. RESEARCH QUESTION: The aim of the present study is to exploit the directional decomposition of coherence to examine to what extent forward and backward arm swing contribute to leg muscle recruitment during gait initiation. METHODS: Ambulant electromyography (EMG) from shoulder muscles (deltoideus anterior and posterior) and upper leg muscles (biceps femoris and rectus femoris) was analysed during gait initiation in nineteen healthy participants (median age of 67 ± 12 (IQR) years). To assess to what extent either deltoideus anterior or posterior muscles were able to drive upper leg muscle activity during distinct stages of the gait initiation process, time dependent intermuscular coherence was decomposed into directional components based on their time lag (i.e. forward, reverse and zero-lag). RESULTS: Coherence from the forward directed components, representing shoulder muscle signals leading leg muscle signals, revealed that deltoideus anterior (i.e. forward arm swing) and deltoideus posterior (i.e. backward arm swing) equally drive upper leg muscle activity during the gait initiation process. SIGNIFICANCE: The presently demonstrated time dependent directional intermuscular coherence analysis could be of use for future studies examining directional coupling between muscles or brain areas relative to certain gait (or other time) events. In the present study, this analysis provided neural underpinning that both forward and backward arm swing can provide neuronal support for leg muscle recruitment during gait initiation and can therefore both serve as an effective gait rehabilitation method in patients with gait initiation difficulties.


Subject(s)
Arm , Leg , Arm/physiology , Electromyography , Gait/physiology , Humans , Leg/physiology , Muscle, Skeletal/physiology
15.
Sci Rep ; 12(1): 6292, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428769

ABSTRACT

GTP-cyclohydrolase deficiency in dopa-responsive dystonia (DRD) patients impairs the biosynthesis of dopamine, but also of serotonin. The high prevalence of non-motor symptoms suggests involvement of the serotonergic pathway. Our study aimed to investigate the serotonergic system in vivo in the brain of`DRD patients and correlate this to (non-)motor symptoms. Dynamic [11C]DASB PET scans, a marker of serotonin transporter availability, were performed. Ten DRD, 14 cervical dystonia patients and 12 controls were included. Univariate- and network-analysis did not show differences in binding between DRD patients compared to controls. Sleep disturbances were correlated with binding in the dorsal raphe nucleus (all participants: rs = 0.45, p = 0.04; patients: rs = 0.64, p = 0.05) and participants with a psychiatric disorder had a lower binding in the hippocampus (all participants: p = 0.00; patients: p = 0.06). Post-hoc analysis with correction for psychiatric co-morbidity showed a significant difference in binding in the hippocampus between DRD patients and controls (p = 0.00). This suggests that psychiatric symptoms might mask the altered serotonergic metabolism in DRD patients, but definite conclusions are difficult as psychiatry is considered part of the phenotype. We hypothesize that an imbalance between different neurotransmitter systems is responsible for the non-motor symptoms, and further research investigating multiple neurotransmitters and psychiatry in DRD is necessary.


Subject(s)
Dystonic Disorders , GTP Cyclohydrolase , Dystonic Disorders/diagnostic imaging , Dystonic Disorders/genetics , GTP Cyclohydrolase/genetics , Guanosine Triphosphate , Humans , Levodopa , Positron-Emission Tomography
16.
EJNMMI Res ; 12(1): 37, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35737201

ABSTRACT

BACKGROUND: 2-Deoxy-2-[18F]fluoroglucose (FDG) PET is an important tool for the identification of Alzheimer's disease (AD) patients through the characteristic neurodegeneration pattern that these patients present. Regional cerebral blood flow (rCBF) images derived from dynamic 11C-labelled Pittsburgh Compound B (PIB) have been shown to present a similar pattern as FDG. Moreover, multivariate analysis techniques, such as scaled subprofile modelling using principal component analysis (SSM/PCA), can be used to generate disease-specific patterns (DP) that may aid in the classification of subjects. Therefore, the aim of this study was to compare rCBF AD-DPs with FDG AD-DP and their respective performances. Therefore, 52 subjects were included in this study. Fifteen AD and 16 healthy control subjects were used to generate four AD-DP: one based on relative cerebral trace blood (R1), two based on time-weighted average of initial frame intervals (ePIB), and one based on FDG images. Furthermore, 21 subjects diagnosed with mild cognitive impairment were tested against these AD-DPs. RESULTS: In general, the rCBF and FDG AD-DPs were characterized by a reduction in cortical frontal, temporal, and parietal lobes. FDG and rCBF methods presented similar score distribution. CONCLUSION: rCBF images may provide an alternative for FDG PET scans for the identification of AD patients through SSM/PCA.

17.
Neuroimage Clin ; 34: 103023, 2022.
Article in English | MEDLINE | ID: mdl-35489193

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is a rare genetic neurodegenerative disease. The neurobiological basis of SCA3 is still poorly understood, and up until now resting-state fMRI (rs-fMRI) has not been used to study this disease. In the current study we investigated (multi-echo) rs-fMRI data from patients with genetically confirmed SCA3 (n = 17) and matched healthy subjects (n = 16). Using independent component analysis (ICA) and subsequent regression with bootstrap resampling, we identified a pattern of differences between patients and healthy subjects, which we coined the fMRI SCA3 related pattern (fSCA3-RP) comprising cerebellum, anterior striatum and various cortical regions. Individual fSCA3-RP scores were highly correlated with a previously published 18F-FDG PET pattern found in the same sample (rho = 0.78, P = 0.0003). Also, a high correlation was found with the Scale for Assessment and Rating of Ataxia scores (r = 0.63, P = 0.007). No correlations were found with neuropsychological test scores, nor with levels of grey matter atrophy. Compared with the 18F-FDG PET pattern, the fSCA3-RP included a more extensive contribution of the mediofrontal cortex, putatively representing changes in default network activity. This rs-fMRI identification of additional regions is proposed to reflect a consequence of the nature of the BOLD technique, enabling measurement of dynamic network activity, compared to the more static 18F-FDG PET methodology. Altogether, our findings shed new light on the neural substrate of SCA3, and encourage further validation of the fSCA3-RP to assess its potential contribution as imaging biomarker for future research and clinical use.


Subject(s)
Machado-Joseph Disease , Neurodegenerative Diseases , Fluorodeoxyglucose F18 , Humans , Machado-Joseph Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods
18.
Mov Disord ; 26(1): 142-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20922809

ABSTRACT

In our previous functional magnetic resonance imaging study, Parkinson's disease (PD) patients with visual hallucinations (VH) showed reduced activations in ventral/lateral visual association cortices preceding image recognition, compared with both PD patients without VH and healthy controls. The primary aim of the current study was to investigate whether functional deficits are associated with grey matter volume changes. In addition, possible grey matter differences between all PD patients and healthy controls were assessed. By using 3-Tesla magnetic resonance imaging (MRI) and voxel-based morphometry (VBM), we found no differences between PD patients with (n = 11) and without VH (n = 13). However, grey matter decreases of the bilateral prefrontal and parietal cortex, left anterior superior temporal, and left middle occipital gyrus were found in the total group of PD patients, compared with controls (n = 14). This indicates that previously demonstrated functional deficits in PD patients with VH are not associated with grey matter loss. The strong left parietal reduction in both nondemented patient groups was hemisphere specific and independent of the side of PD symptoms.


Subject(s)
Brain Mapping , Cerebral Cortex/pathology , Hallucinations/complications , Neurons/pathology , Parkinson Disease/pathology , Analysis of Variance , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Mental Status Schedule , Neuropsychological Tests , Parkinson Disease/complications
19.
Neurocase ; 17(4): 297-312, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20818541

ABSTRACT

In this study, we describe a 58-year-old male patient (FZ) with a right-amygdala lesion after temporal lobe infarction. FZ is unable to recognize fearful facial expressions. Instead, he consistently misinterprets expressions of fear for expressions of surprise. Employing EEG/ERP measures, we investigated whether presentation of fearful and surprised facial expressions would lead to different response patterns. We also measured ERPs to aversively conditioned and unconditioned fearful faces. We compared ERPs elicited by supraliminally and subliminally presented conditioned fearful faces (CS+), unconditioned fearful faces (CS-) and surprised faces. Despite FZ's inability to recognize fearful facial expressions in emotion recognition tasks, ERP components showed different response patterns to pictures of surprised and fearful facial expressions, indicating that covert or implicit recognition of fear is still intact. Differences between ERPs to CS+ and CS- were only found when these stimuli were presented subliminally. This indicates that intact right amygdala function is not necessary for aversive conditioning. Previous studies have stressed the importance of the right amygdala for discriminating facial emotional expressions and for classical conditioning. Our study suggests that the right amygdala is necessary for explicit recognition of fear, while implicit recognition of fear and classical conditioning may still occur following lesion of the right amygdala.


Subject(s)
Amygdala/pathology , Amygdala/physiology , Consciousness , Fear/physiology , Unconscious, Psychology , Conditioning, Classical , Electroencephalography , Evoked Potentials/physiology , Facial Expression , Humans , Male , Middle Aged , Neuropsychological Tests , Recognition, Psychology , Visual Perception/physiology
20.
Front Hum Neurosci ; 15: 691482, 2021.
Article in English | MEDLINE | ID: mdl-34413729

ABSTRACT

BACKGROUND: Walking is characterized by stable antiphase relations between upper and lower limb movements. Such bilateral rhythmic movement patterns are neuronally generated at levels of the spinal cord and brain stem, that are strongly interconnected with cortical circuitries, including the Supplementary Motor Area (SMA). OBJECTIVE: To explore cerebral activity associated with multi-limb phase relations in human gait by manipulating mutual attunement of the upper and lower limb antiphase patterns. METHODS: Cortical activity and gait were assessed by ambulant EEG, accelerometers and videorecordings in 35 healthy participants walking normally and 19 healthy participants walking in amble gait, where upper limbs moved in-phase with the lower limbs. Power changes across the EEG frequency spectrum were assessed by Event Related Spectral Perturbation analysis and gait analysis was performed. RESULTS: Amble gait was associated with enhanced Event Related Desynchronization (ERD) prior to and during especially the left swing phase and reduced Event Related Synchronization (ERS) at final swing phases. ERD enhancement was most pronounced over the putative right premotor, right primary motor and right parietal cortex, indicating involvement of higher-order organization and somatosensory guidance in the production of this more complex gait pattern, with an apparent right hemisphere dominance. The diminished within-step ERD/ERS pattern in amble gait, also over the SMA, suggests that this gait pattern is more stride driven instead of step driven. CONCLUSION: Increased four-limb phase complexity recruits distributed networks upstream of the primary motor cortex, primarily lateralized in the right hemisphere. Similar parietal-premotor involvement has been described to compensate impaired SMA function in Parkinson's disease bimanual antiphase movement, indicating a role as cortical support regions.

SELECTION OF CITATIONS
SEARCH DETAIL