Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Neurochem Int ; 146: 105021, 2021 06.
Article in English | MEDLINE | ID: mdl-33741413

ABSTRACT

Benzodiazepines are commonly used to treat disorders of the central nervous system, including anxiety. However, due to their adverse effects, there is a continuing interest in discovering new safe and effective drugs. Marine natural products have emerged as a prolific source of bioactive nitrogenated compounds. Aiming to discover new biologically active natural compounds, the marine sponge Aplysina fulva, a nitrogen-bearing heterocyst producer, was investigated. The main isolated compounds (4, 6, and 9) were evaluated on adult zebrafish (Danio rerio). A group of fishes (n = 6) was preliminarily subjected to acute toxicity, and open field tests using 0.1, 0.5, and 1.0 mg/mL (v. o.) of those compounds was performed. The anxiolytic effect was further investigated in the light/dark assay based on the locomotor response at zebrafish. Interactions through the GABAergic system were investigated using flumazenil, a silent modulator of GABA receptors. To improve the results, a study of molecular docking using the GABAA receptor also was performed. Based on the results, the bromotyrosine derivative compounds 4, 6, and 9 exhibited anxiolytic-like effects mediated by the GABAergic system.


Subject(s)
Anti-Anxiety Agents/pharmacology , Biological Products/pharmacology , Bromides/pharmacology , GABA Modulators/pharmacology , Receptors, GABA-A/metabolism , Age Factors , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Bromides/chemistry , Bromides/isolation & purification , Dose-Response Relationship, Drug , Female , GABA Modulators/chemistry , GABA Modulators/isolation & purification , Locomotion/drug effects , Locomotion/physiology , Male , Porifera , Protein Structure, Secondary , Receptors, GABA-A/chemistry , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL