Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Phys Rev Lett ; 124(23): 232502, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603173

ABSTRACT

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique ß-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique ß-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.

2.
Phys Rev Lett ; 123(16): 161802, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31702371

ABSTRACT

A search for neutrinoless double-ß decay (0νßß) in ^{136}Xe is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νßß and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of ^{136}Xe 0νßß has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νßß half-life sensitivity for this analysis is 5.0×10^{25} yr with a total ^{136}Xe exposure of 234.1 kg yr. No statistically significant evidence for 0νßß is observed, leading to a lower limit on the 0νßß half-life of 3.5×10^{25} yr at the 90% confidence level.

3.
Phys Rev Lett ; 120(7): 072701, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542972

ABSTRACT

Results from a search for neutrinoless double-beta decay (0νßß) of ^{136}Xe are presented using the first year of data taken with the upgraded EXO-200 detector. Relative to previous searches by EXO-200, the energy resolution of the detector has been improved to σ/E=1.23%, the electric field in the drift region has been raised by 50%, and a system to suppress radon in the volume between the cryostat and lead shielding has been implemented. In addition, analysis techniques that improve topological discrimination between 0νßß and background events have been developed. Incorporating these hardware and analysis improvements, the median 90% confidence level 0νßß half-life sensitivity after combining with the full data set acquired before the upgrade has increased twofold to 3.7×10^{25} yr. No statistically significant evidence for 0νßß is observed, leading to a lower limit on the 0νßß half-life of 1.8×10^{25} yr at the 90% confidence level.

4.
Phys Rev Lett ; 109(3): 032505, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861843

ABSTRACT

We report on a search for neutrinoless double-beta decay of 136Xe with EXO-200. No signal is observed for an exposure of 32.5 kg yr, with a background of ∼1.5×10(-3) kg(-1) yr(-1) keV(-1) in the ±1σ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay T(1/2)(0νßß)(136Xe)>1.6×10(25) yr (90% C.L.), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.

5.
Phys Rev Lett ; 107(21): 212501, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181874

ABSTRACT

We report the observation of two-neutrino double-beta decay in (136)Xe with T(1/2) = 2.11 ± 0.04(stat) ± 0.21(syst) × 10(21) yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for (136)Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

6.
Rev Sci Instrum ; 79(4): 045101, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18447546

ABSTRACT

We describe a sensor for the measurement of thin dielectric layers capable of operation in a variety of environments. The sensor is obtained by microfabricating a capacitor with interleaved aluminum fingers, exposed to the dielectric to be measured. In particular, the device can measure thin layers of solid frozen from a liquid or gaseous medium. Sensitivity to single atomic layers is achievable in many configurations and, by utilizing fast, high sensitivity capacitance readout in a feedback system onto environmental parameters; coatings of few layers can be dynamically maintained. We discuss the design, readout, and calibration of several versions of the device optimized in different ways. We specifically dwell on the case in which atomically thin solid xenon layers are grown and stabilized, in cryogenic conditions, from a liquid xenon bath.

7.
J Gen Physiol ; 50(8): 1961-91, 1967 Sep.
Article in English | MEDLINE | ID: mdl-6056010

ABSTRACT

Retinal action potentials were recorded at the corneas of light-adapted wolf spider eyes in response to large positive and negative step changes in background illumination. These incremental responses were superimposed upon the steady-state DC responses to the background illumination. Both positive and negative step responses had peaks which overshot the DC levels to which they decayed. The overshoot was greater for positive than for negative steps. Short term DC responses measured after one-half sec were larger for negative than for positive steps; these short-term DC responses were thus asymmetrical. However, responses to short positive and negative flashes were not asymmetrical; rather, they varied linearly with flash amplitude. Asymmetries were thus delayed in onset. The short-term DC responses were found to be different from the steady-state DC responses to maintained changes in background illumination. There was an approximately exponential decay or creep from the short-term to the steady-state DC responses. It is proposed that the dynamics of delayed asymmetries can explain the waveforms of the short-term transient responses.


Subject(s)
Insecta/physiology , Light , Retina/physiology , Action Potentials , Animals , Electrophysiology/instrumentation
8.
J Gen Physiol ; 50(8): 1993-2030, 1967 Sep.
Article in English | MEDLINE | ID: mdl-6056011

ABSTRACT

A quantitative model is proposed to test the hypothesis that the dynamics of nonlinearities in retinal action potentials from light-adapted wolf spider eyes may be due to delayed asymmetries in responses of the visual cells. For purposes of calculation, these delayed asymmetries are generated in an analogue by a time-variant resistance. It is first shown that for small incremental stimuli, the linear behavior of such a resistance describes peaking and low frequency phase lead in frequency responses of the eye to sinusoidal modulations of background illumination. It also describes the overshoots in linear step responses. It is next shown that the analogue accounts for nonlinear transient and short term DC responses to large positive and negative step stimuli and for the variations in these responses with changes in degree of light adaptation. Finally, a physiological model is proposed in which the delayed asymmetries in response are attributed to delayed rectification by the visual cell membrane. In this model, cascaded chemical reactions may serve to transduce visual stimuli into membrane resistance changes.


Subject(s)
Insecta/physiology , Light , Models, Biological , Models, Theoretical , Retina/physiology , Action Potentials , Animals , Membrane Potentials
9.
J Gen Physiol ; 59(3): 247-69, 1972 Mar.
Article in English | MEDLINE | ID: mdl-5058960

ABSTRACT

Intracellular recordings have been made from visual cells in principal and secondary eyes of in vitro wolf spider preparations. The responses of all cells to all wavelengths of light were graded depolarizations; no hyperpolarizations or nerve discharges were seen. Cells in a secondary eye, the anterior lateral eye, had a maximum sensitivity in the visible at 510 nm and a secondary maximum, or shoulder, of sensitivity in the near ultraviolet at 380 nm. Cells in principal eyes, the anterior median eyes, all responded maximally both in the visible at 510 nm and in the ultraviolet at 360-370 nm or less. However, there was no typical ratio of ultraviolet to visible sensitivities; the differences in log sensitivities (log UV/VIS) varied from 3.3 to -0.5. Each principal eye had a population of cells with different ratios. These populations varied with the time of the year, possibly due to changes in light upon the animals. Chromatic adaptations of cells in anterior median (but not anterior lateral) eyes resulted in small, selective changes in spectral sensitivities, and there was some facilitation of responses from cells repeatedly stimulated. It is concluded that cells of secondary eyes contain only a visual pigment absorbing maximally in the visible, while cells of principal eyes probably contain variable amounts of both this pigment and one absorbing in the ultraviolet as well.


Subject(s)
Eye/radiation effects , Light , Spiders/physiology , Ultraviolet Rays , Adaptation, Ocular , Animals , Color Perception , Electroretinography , In Vitro Techniques , Membrane Potentials , Ocular Physiological Phenomena , Radiation Effects
10.
J Gen Physiol ; 65(4): 399-419, 1975 Apr.
Article in English | MEDLINE | ID: mdl-1151320

ABSTRACT

Spectral sensitivities were recorded intracellulary in median ocelli of Anax junius, Aeschnatuberculifera, and Libellulapulcella. All cells had peak sensitivities at 360 and 500 nm while UV-blue+green cells found only in Anax had a third peak sensitivity at 440 nm. Ratios of UV-to-green sensitivities varied from cell to cell in each ocellus, but no UV-only or green-only cells were recorded. Half of the cells tested had a reverse Purkinje shift: They were more sensitive in the green at low illuminations but more sensitive in the UV at high illuminations; their intensity-response curves at 370 and 520 nm crossed but became parallel for large responses. Wave-lengths 420 nm and shorter elicited a family of low intensity-response curves with one slope; wavelengths 440 nm and longer elicities a family of curves with another slope. Orange-adapting lights selectively adapted sensitivity in the green, but UV-adapting lights had little selective effect. Amounts of log-selective adaptation were proportional to log orange-adapting intensity. It is concluded that two spectral mechanisms can be recorded from each cell, possibly by coupling of UV and green cells or possibly because each cell contains two visual pigments. Selective chromatic adaptations may provide the ocellus with a kind of "authomatic color control," while the reverse Purkinje shift could extend the ocellus' sensitivity to prevailing skylight.


Subject(s)
Color Perception , Insecta/physiology , Animals , Eye/cytology , Fiber Optic Technology , Purkinje Cells/ultrastructure , Purkinje Fibers/ultrastructure , Ultraviolet Rays
11.
J Gen Physiol ; 61(3): 273-89, 1973 Mar.
Article in English | MEDLINE | ID: mdl-4689620

ABSTRACT

The early receptor potential (ERP), membrane potential, membrane resistance, and sensitivity were measured during light and/or dark adaptation in the ventral eye of Limulus. After a bright flash, the ERP amplitude recovered with a time constant of 100 ms, whereas the sensitivity recovered with an initial time constant of 20 s. When a strong adapting light was turned off, the recovery of membrane potential and of membrane resistance had time-courses similar to each other, and both recovered more rapidly than the sensitivity. The receptor depolarization was compared during dark adaptation after strong illumination and during light adaptation with weaker illumination; at equal sensitivities the cell was more depolarized during light adaptation than during dark adaptation. Finally, the waveforms of responses to flashes were compared during dark adaptation after strong illumination and during light adaptation with weaker illumination. At equal sensitivities (equal amplitude responses for identical flashes), the responses during light adaptation had faster time-courses than the responses during dark adaptation. Thus neither the photochemical cycle nor the membrane potential nor the membrane resistance is related to sensitivity changes during dark adaptation in the photoreceptors of the ventral eye. By elimination, these results imply that there are (unknown) intermediate process(es) responsible for adaptation interposed between the photochemical cycle and the electrical properties of the photoreceptor.


Subject(s)
Adaptation, Ocular , Brachyura/physiology , Photoreceptor Cells/physiology , Action Potentials , Animals , Dark Adaptation , Electric Conductivity , Membrane Potentials , Photic Stimulation , Photochemistry , Retinal Pigments
12.
J Gen Physiol ; 54(1): 1-32, 1969 Jul.
Article in English | MEDLINE | ID: mdl-5792363

ABSTRACT

ERG's to spectral lights were recorded from all eyes of intact wolf spiders. Secondary eyes have maximum relative sensitivities at 505-510 nm which are unchanged by chromatic adaptations. Principal eyes have ultraviolet sensitivities which are 10 to 100 times greater at 380 nm than at 505 nm. However, two animals' eyes initially had greater blue-green sensitivities, then in 7 to 10 wk dropped 4 to 6 log units in absolute sensitivity in the visible, less in the ultraviolet. Chromatic adaptations of both types of principal eyes hardly changed relative spectral sensitivities. Small decreases in relative sensitivity in the visible with orange adaptations were possibly retinomotor in origin. Second peaks in ERG waveforms were elicited from ultraviolet-adapted principal eyes by wavelengths 400 nm and longer, and from blue-, yellow-, and orange-adapted secondary eyes by wavelengths 580 nm and longer. The second peaks in waveforms were most likely responses of unilluminated eyes to scattered light. It is concluded that both principal and secondary eyes contain cells with a visual pigment absorbing maximally at 505-510 nm. The variable absolute and ultraviolet sensitivities of principal eyes may be due to a second pigment in the same cells or to an ultraviolet-absorbing accessory pigment which excites the 505 nm absorbing visual pigment by radiationless energy transfer.


Subject(s)
Color Perception , Ocular Physiological Phenomena , Vision, Ocular , Animals , Electroretinography , Eye/anatomy & histology , Methods , Spiders , Ultraviolet Rays
13.
J Comp Neurol ; 217(3): 271-87, 1983 Jul 01.
Article in English | MEDLINE | ID: mdl-6193149

ABSTRACT

Directionally selective (DS) and other ganglion cells of the turtle retina were studied in in vitro eyecup preparations by using intracellular recording and staining techniques. DS ganglion cells responded to moving gratings with periodic, depolarizing synaptic potentials in both preferred and null directions. Although depolarizations were usually larger in the preferred than in the null directions, in a few cells spike discharges were directional but depolarizations were not. Directionality could disappear if inappropriate field sizes or grating spatial frequencies were used. Unlike non-DS cells, one-half of the DS cells penetrated showed two sizes of action potentials upon photostimulation. It is proposed that the smaller spikes originated at axonal initial segments and failed to invade the somas actively. DS cells also exhibited postspike depolarizations (PSDs). Three types of DS ganglion cells (ON-OFF, OFF center, and ON center) were identified morphologically with Lucifer yellow injection. Other ganglion cells, which were also recorded from and stained intracellularly, are compared to the DS cells.


Subject(s)
Motion Perception/physiology , Retina/cytology , Turtles/anatomy & histology , Visual Perception/physiology , Action Potentials , Animals , Neurons/cytology , Retina/physiology , Staining and Labeling
14.
Science ; 214(4519): 433, 1981 Oct 23.
Article in English | MEDLINE | ID: mdl-17730241
15.
J Neurosci Methods ; 68(2): 203-10, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8912193

ABSTRACT

A number of methods have been used in the past to measure spectral sensitivity (S(lambda)) functions of electric responses in the visual system. We present here a microcomputer based, AC, constant-response method for automatic on-line measurement of S(lambda) in cells with or without a sustained tonic response. It is based on feedback adjustment of light intensity to obtain constant peak-to-peak amplitudes of response to a flickering stimulus as the spectrum is scanned between 300 and 700 nm in 4 nm steps. It combines the advantages of: (1) on-line presentation of S(lambda) curves; (2) constant light adaptation; (3) sampling of many points; and (4) fast data collection time. The system can be applied to sensitivity or threshold (e.g., S(lambda), dark adaptation, receptive field) measurements of any electrically recorded visual response.


Subject(s)
Photoreceptor Cells/physiology , Visual Cortex/physiology , Animals , Bees , Sensitivity and Specificity
16.
Braz J Med Biol Res ; 30(2): 169-77, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9239301

ABSTRACT

Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes) needed at each wavelength to elicit the same criterion amplitude of responses. The review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level.


Subject(s)
Color Perception/physiology , Photoreceptor Cells/physiology , Vision, Ocular/physiology , Color Perception Tests/methods , Electrophysiology , Interferometry
17.
Rev Sci Instrum ; 85(9): 095114, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25273779

ABSTRACT

We describe a system to transport and identify barium ions produced in liquid xenon, as part of R&D towards the second phase of a double beta decay experiment, nEXO. The goal is to identify the Ba ion resulting from an extremely rare nuclear decay of the isotope (136)Xe, hence providing a confirmation of the occurrence of the decay. This is achieved through Resonance Ionization Spectroscopy (RIS). In the test setup described here, Ba ions can be produced in liquid xenon or vacuum and collected on a clean substrate. This substrate is then removed to an analysis chamber under vacuum, where laser-induced thermal desorption and RIS are used with time-of-flight mass spectroscopy for positive identification of the barium decay product.

18.
Rev Sci Instrum ; 82(10): 105114, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22047336

ABSTRACT

A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.

19.
Rev Sci Instrum ; 81(11): 113301, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21133463

ABSTRACT

We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating (148)Gd onto a silicon α-particle detector and vapor depositing a layer of BaF(2) over it. (144)Sm recoils from the alpha decay of (148)Gd are used to dislodge Ba(+) ions from the BaF(2) layer and emit them in the surrounding environment. The simultaneous detection of an α particle in the substrate detector allows for tagging of the nuclear decay and of the Ba(+) emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source.

SELECTION OF CITATIONS
SEARCH DETAIL