Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Adv ; 7(27)2021 07.
Article in English | MEDLINE | ID: mdl-34215580

ABSTRACT

Millions of putative transcriptional regulatory elements (TREs) have been cataloged in the human genome, yet their functional relevance in specific pathophysiological settings remains to be determined. This is critical to understand how oncogenic transcription factors (TFs) engage specific TREs to impose transcriptional programs underlying malignant phenotypes. Here, we combine cutting edge CRISPR screens and epigenomic profiling to functionally survey ≈15,000 TREs engaged by estrogen receptor (ER). We show that ER exerts its oncogenic role in breast cancer by engaging TREs enriched in GATA3, TFAP2C, and H3K27Ac signal. These TREs control critical downstream TFs, among which TFAP2C plays an essential role in ER-driven cell proliferation. Together, our work reveals novel insights into a critical oncogenic transcription program and provides a framework to map regulatory networks, enabling to dissect the function of the noncoding genome of cancer cells.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Regulatory Networks , Carcinogenesis/genetics , Epigenomics , Genome, Human , Humans , Regulatory Elements, Transcriptional
2.
Nat Commun ; 11(1): 6315, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298926

ABSTRACT

Despite the increasing interest in targeting stromal elements of the tumor microenvironment, we still face tremendous challenges in developing adequate therapeutics to modify the tumor stromal landscape. A major obstacle to this is our poor understanding of the phenotypic and functional heterogeneity of stromal cells in tumors. Herein, we perform an unbiased interrogation of tumor mesenchymal cells, delineating the co-existence of distinct subsets of cancer-associated fibroblasts (CAFs) in the microenvironment of murine carcinomas, each endowed with unique phenotypic features and functions. Furthermore, our study shows that neutralization of TGFß in vivo leads to remodeling of CAF dynamics, greatly reducing the frequency and activity of the myofibroblast subset, while promoting the formation of a fibroblast population characterized by strong response to interferon and heightened immunomodulatory properties. These changes correlate with the development of productive anti-tumor immunity and greater efficacy of PD1 immunotherapy. Along with providing the scientific rationale for the evaluation of TGFß and PD1 co-blockade in the clinical setting, this study also supports the concept of plasticity of the stromal cell landscape in tumors, laying the foundation for future investigations aimed at defining pathways and molecules to program CAF composition for cancer therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cancer-Associated Fibroblasts/immunology , Carcinoma/drug therapy , Interferon-beta/immunology , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cancer-Associated Fibroblasts/drug effects , Carcinoma/immunology , Carcinoma/pathology , Cell Line, Tumor/transplantation , Cell Plasticity/drug effects , Cell Plasticity/immunology , Disease Models, Animal , Drug Synergism , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Stromal Cells/drug effects , Stromal Cells/immunology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
3.
Cell Rep ; 25(5): 1255-1267.e5, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30380416

ABSTRACT

Perturbed epigenomic programs play key roles in tumorigenesis, and chromatin modulators are candidate therapeutic targets in various human cancer types. To define singular and shared dependencies on DNA and histone modifiers and transcription factors in poorly differentiated adult and pediatric cancers, we conducted a targeted shRNA screen across 59 cell lines of 6 cancer types. Here, we describe the TRPS1 transcription factor as a strong breast cancer-specific hit, owing largely to lineage-restricted expression. Knockdown of TRPS1 resulted in perturbed mitosis, apoptosis, and reduced tumor growth. Integrated analysis of TRPS1 transcriptional targets, chromatin binding, and protein interactions revealed that TRPS1 is associated with the NuRD repressor complex. These findings uncover a transcriptional network that is essential for breast cancer cell survival and propagation.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Lineage , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Cell Line, Tumor , Cell Survival/genetics , Female , HEK293 Cells , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Protein Binding , RNA, Small Interfering/metabolism , Repressor Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
4.
Cancer Discov ; 6(8): 900-13, 2016 08.
Article in English | MEDLINE | ID: mdl-27260157

ABSTRACT

UNLABELLED: CRISPR/Cas9 has emerged as a powerful new tool to systematically probe gene function. We compared the performance of CRISPR to RNAi-based loss-of-function screens for the identification of cancer dependencies across multiple cancer cell lines. CRISPR dropout screens consistently identified more lethal genes than RNAi, implying that the identification of many cellular dependencies may require full gene inactivation. However, in two aneuploid cancer models, we found that all genes within highly amplified regions, including nonexpressed genes, scored as lethal by CRISPR, revealing an unanticipated class of false-positive hits. In addition, using a CRISPR tiling screen, we found that sgRNAs targeting essential domains generate the strongest lethality phenotypes and thus provide a strategy to rapidly define the protein domains required for cancer dependence. Collectively, these findings not only demonstrate the utility of CRISPR screens in the identification of cancer-essential genes, but also reveal the need to carefully control for false-positive results in chromosomally unstable cancer lines. SIGNIFICANCE: We show in this study that CRISPR-based screens have a significantly lower false-negative rate compared with RNAi-based screens, but have specific liabilities particularly in the interrogation of regions of genome amplification. Therefore, this study provides critical insights for applying CRISPR-based screens toward the systematic identification of new cancer targets. Cancer Discov; 6(8); 900-13. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Aguirre et al., p. 914This article is highlighted in the In This Issue feature, p. 803.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Amplification , Genome, Human , Genomics , Neoplasms/genetics , Cell Line, Tumor , Genetic Association Studies , Genomics/methods , Genomics/standards , High-Throughput Screening Assays , Humans , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA, Guide, Kinetoplastida/genetics , RNA, Small Interfering/genetics , Reproducibility of Results
5.
Science ; 351(6278): 1208-13, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26912361

ABSTRACT

5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Methionine/metabolism , Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Cell Line, Tumor , Cell Survival , Cyclin-Dependent Kinase Inhibitor p16/genetics , Deoxyadenosines/metabolism , Gene Deletion , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Purine-Nucleoside Phosphorylase/genetics , RNA, Small Interfering/genetics , Thionucleosides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL