Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Langmuir ; 40(1): 170-178, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38113389

ABSTRACT

Enzyme-based electrochemical biosensors play an important role in point-of-care diagnostics for personalized medicine. For such devices, lipid cubic phases (LCP) represent an attractive method to immobilize enzymes onto conductive surfaces with no need for chemical linking. However, research has been held back by the lack of effective strategies to stably co-immobilize enzymes with a redox shuttle that enhances the electrical connection between the enzyme redox center and the electrode. In this study, we show that a monoolein (MO) LCP system doped with an amphiphilic redox mediator (ferrocenylmethyl)dodecyldimethylammonium bromide (Fc12) can be used for enzyme immobilization to generate an effective biosensing platform. Small-angle X-ray scattering (SAXS) showed that MO LCP can incorporate Fc12 while maintaining the Pn3m symmetry morphology. Cyclic voltammograms of Fc12/MO showed quasi-reversible behavior, which implied that Fc12 was able to freely diffuse in the lipid membrane of LCP with a diffusion coefficient of 1.9 ± 0.2 × 10-8 cm2 s-1 at room temperature. Glucose oxidase (GOx) was then chosen as a model enzyme and incorporated into 0.2%Fc12/MO to evaluate the activity of the platform. GOx hosted in 0.2%Fc12/MO followed Michaelis-Menten kinetics toward glucose with a KM and Imax of 8.9 ± 0.5 mM and 1.4 ± 0.2 µA, respectively, and a linearity range of 2-17 mM glucose. Our results therefore demonstrate that GOx immobilized onto 0.2% Fc12/MO is a suitable platform for the electrochemical detection of glucose.


Subject(s)
Biosensing Techniques , Glucose , Scattering, Small Angle , X-Ray Diffraction , Oxidation-Reduction , Glucose Oxidase/metabolism , Enzymes, Immobilized/metabolism , Biosensing Techniques/methods , Electrodes
2.
Water Sci Technol ; 79(12): 2231-2241, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31411577

ABSTRACT

Microbial fuel cell (MFC) technology holds enormous potential for inexpensive real-time and onsite testing of water sources. With the intent of defining optimal operational conditions, we investigated the effect of environmental factors (changes in temperature, pH and ionic strength), on the performance of a single chamber miniature MFC sensor. The pH of the influent had the greatest effect on the MFC performance, with a 0.531 ± 0.064 µA cm-2 current variation per unit change of pH. Within the range tested, temperature and ionic strength had only a minor impact (0.010 ± 0.001 µA °C-1 cm-2 and of 0.027 ± 0.003 µA mS-1 cm cm-2 respectively). Under controlled operational conditions, for the first time, we demonstrated the ability of this biosensor to detect one of the most commonly applied pesticides worldwide, atrazine. The sensitivity to atrazine was 1.39 ± 0.26 ppm-1 cm-2, with a detection range of 0.05-0.3 ppm. Guidelines for systematic studies of MFC biosensors for practical applications through a factorial design approach are also provided. Consequently, our work not only enforces the promise of miniature MFC biosensors for organic pollutants detection in waters, but it also provides important directions towards future investigations for infield applications.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Pesticides , Electrodes
3.
Biosensors (Basel) ; 14(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38920593

ABSTRACT

Implantable and wearable bioelectronic systems can enable tailored therapies for the effective management of long-term diseases, thus minimising the risk of associated complications. In this context, glucose fuel cells hold great promise as in- or on-body energy harvesters for ultra-low-power bioelectronics and as self-powered glucose sensors. We report here the generation of gold nanostructures through a gold electrodeposition method in a soft template for the abiotic electrocatalysis of glucose in glucose fuel cells. Two different types of soft template were used: a lipid cubic phase-based soft template composed of Phytantriol and Brij®-56, and an emulsion-based soft template composed of hexane and sodium dodecyl sulphate (SDS). The resulting gold structures were first characterised by SAXS, SEM and TEM to elucidate their structure, and then their electrocatalytic activity towards glucose was compared in both a three-electrode set-up and in a fuel cell set-up. The Phytantriol/Brij®-56 template led to a nanofeather-like Au structure, while the hexane/SDS template led to a nanocoral-like Au structure. These templated electrodes exhibited similar electrochemical active surface areas (0.446 cm2 with a roughness factor (RF) of 14.2 for Phytantriol/Brij®-56 templated nanostructures and 0.421 cm2 with an RF of 13.4 for hexane/SDS templated nanostructures), and a sensitivity towards glucose of over 7 µA mM-1 cm-2. When tested as the anode of an abiotic glucose fuel cell (in a phosphate-buffered solution with a glucose concentration of 6 mM), a maximum power density of 7 µW cm-2 was reached; however the current density in the case of the fuel cell with the Phytantriol/Brij®-56 templated anode was approximately two times higher, reaching the value of 70 µA cm-2. Overall, this study demonstrates two simple, cost-effective and efficient strategies to manipulate the morphology of gold nanostructures, and thus their catalytic property, paving the way for the successful manufacturing of functional abiotic glucose fuel cells.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Glucose , Gold , Nanostructures , Gold/chemistry , Glucose/analysis , Electrodes , Electrochemical Techniques
4.
J Hazard Mater ; 478: 135473, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39151358

ABSTRACT

Widespread pesticide use in agriculture is a major source of soil pollution, driving biodiversity loss and posing serious threads to human health. The recalcitrant nature of most of these pesticides demands for effective remediation strategies. In this study, we assess the ability of soil microbial fuel cell (SMFC) technology to bioremediate soil polluted by the model pesticide atrazine. To elucidate the degradation mechanism and consequently define effective implementation strategies, we provide the first comprehensive investigation of the SMFC performance, in which the monitoring of the electrochemical performance of the system is combined with Quadrupole Time-of-Flight (QTOF) mass spectrometry and microbial analyses. Our results show that, while both SMFC and natural attenuation lead to a reduction on atrazine levels, the SMFC modulates the activity of different microbial pathways. As a result, atrazine degradation by natural attenuation leads to high levels of deisoproylatrazine (DIPA), a very toxic degradation metabolite, while DIPA levels in soil treated by SMFC remain comparatively low. The beta diversity and differential abundance analyses revealed how the microbial community evolves over time in the SMFCs degrading atrazine, demonstrating the enrichment of electroactive taxa on the anode, and the enrichment of a mixture of electroactive and atrazine-degrading taxa at the cathode. The detection and taxonomic classification of peripheral atrazine degrading genes, atzA, atzB and atzC, was carried out in combination with the differential abundance analysis. Results revealed that these genes are likely harboured by members of the order Rhizobiales enriched at the cathode, thus promoting atrazine degradation via the conversion of hydroxyatrazine (HA) into N-isopropylammelide (NIPA), as confirmed by mass spectrometry data. Overall, the comprehensive approach adopted in this work, provides fundamental insights into the degradation pathways of atrazine in soil by SMFC technology, which is critical for practical applications, thus suggesting an effective approach to advance research in the field.


Subject(s)
Atrazine , Biodegradation, Environmental , Bioelectric Energy Sources , Herbicides , Soil Microbiology , Soil Pollutants , Atrazine/metabolism , Soil Pollutants/metabolism , Herbicides/metabolism , Herbicides/chemistry
5.
J Colloid Interface Sci ; 679(Pt A): 544-553, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39383833

ABSTRACT

Electrically conductive hydrogels (ECHs) combine the electrical properties of conductive materials with the unique features of hydrogels. They are attractive for various biomedical applications due to their smart response to electrical fields. Owing to their distinctive properties, such as biocompatibility, thermosensitivity and self-assembling behaviour, Pluronics can be adopted for the generation of hydrogels for biomedical applications. Here, innovative self-assembling ECHs holding antimicrobial properties for biomedical applications are developed, providing a full characterization of their macroscopic and microscopic properties. The rheological, morphological, and structural properties of Pluronic F68 (PF68) in the presence of conductive poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) (PEDOT:PSS) are studied to optimize the synthesis of novel biocompatible and electrically conductive hydrogels. The addition of silver (Ag) flakes to the aqueous samples of PF68/PEDOT:PSS is used to further enhance the systems electrical conductivity and antimicrobial potency. Aqueous optimal samples with 45 wt% PF68 and different PEDOT:PSS/silver contents are investigated by means of experimental rheology and small-angle X-ray scattering (SAXS), to unveil the influence of both PEDOT:PSS and silver on the phase diagram, macroscopic flow properties, and morphology of the Pluronic-based systems. The presence of PEDOT:PSS and silver flakes endows Pluronic systems with high conductive properties, while preserving the same self-assembly features of PF68 in water. Moreover, the functionalisation with silver flakes confers antimicrobial properties to the ECHs, as demonstrated by growth inhibition of the multi-drug resistant bacterium Staphylococcus aureus. The use of PF68 in this work provides a novel route for the synthesis of innovative ECHs, whose functionalities such as self-assembling behaviour, biocompatibility, conductivity, and bioactivity may inspire future avenues in the biomedical field.

6.
Artif Cells Nanomed Biotechnol ; 51(1): 618-629, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37933813

ABSTRACT

Gynaecological cancers are a major global health concern due to the lack of effective screening programmes for ovarian and endometrial cancer, for example, and variable access to vaccination and screening tests for cervical cancer in many countries. Recent research on portable and cost-effective lab-on-a-chip (LoC) technologies show promise for mass screening and diagnostic procedures for gynaecological cancers. However, most LoCs for gynaecological cancer are still in development, with a need to establish and clinically validate factors such as the type of biomarker, sample and method of detection, before patient use. Multiplex approaches, detecting a panel of gynaecological biomarkers in a single LoC, offer potential for more reliable diagnosis. This review highlights the current research on LoCs for gynaecological cancer screening and diagnosis, emphasizing the need for further research and validation prior to their widespread adoption in clinical practice.


Subject(s)
Endometrial Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Early Detection of Cancer , Oligonucleotide Array Sequence Analysis
7.
Environ Sci Ecotechnol ; 16: 100276, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37206316

ABSTRACT

Increasing energy demands and environmental pollution concerns press for sustainable and environmentally friendly technologies. Soil microbial fuel cell (SMFC) technology has great potential for carbon-neutral bioenergy generation and self-powered electrochemical bioremediation. In this study, an in-depth assessment on the effect of several carbon-based cathode materials on the electrochemical performance of SMFCs is provided for the first time. An innovative carbon nanofibers electrode doped with Fe (CNFFe) is used as cathode material in membrane-less SMFCs, and the performance of the resulting device is compared with SMFCs implementing either Pt-doped carbon cloth (PtC), carbon cloth, or graphite felt (GF) as the cathode. Electrochemical analyses are integrated with microbial analyses to assess the impact on both electrogenesis and microbial composition of the anodic and cathodic biofilm. The results show that CNFFe and PtC generate very stable performances, with a peak power density (with respect to the cathode geometric area) of 25.5 and 30.4 mW m-2, respectively. The best electrochemical performance was obtained with GF, with a peak power density of 87.3 mW m-2. Taxonomic profiling of the microbial communities revealed differences between anodic and cathodic communities. The anodes were predominantly enriched with Geobacter and Pseudomonas species, while cathodic communities were dominated by hydrogen-producing and hydrogenotrophic bacteria, indicating H2 cycling as a possible electron transfer mechanism. The presence of nitrate-reducing bacteria, combined with the results of cyclic voltammograms, suggests microbial nitrate reduction occurred on GF cathodes. The results of this study can contribute to the development of effective SMFC design strategies for field implementation.

8.
RSC Adv ; 11(27): 16307-16317, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-35479166

ABSTRACT

The need for water security pushes for the development of sensing technologies that allow online and real-time assessments and are capable of autonomous and stable long-term operation in the field. In this context, Microbial Fuel Cell (MFC) based biosensors have shown great potential due to cost-effectiveness, simplicity of operation, robustness and the possibility of self-powered applications. This review focuses on the progress of the technology in real scenarios and in-field applications and discusses the technological bottlenecks that must be overcome for its success. An overview of the most relevant findings and challenges of MFC sensors for practical implementation is provided. First, performance indicators for in-field applications, which may diverge from lab-based only studies, are defined. Progress on MFC designs for off-grid monitoring of water quality is then presented with a focus on solutions that enhance robustness and long-term stability. Finally, calibration methods and detection algorithms for applications in real scenarios are discussed.

9.
ACS Appl Mater Interfaces ; 13(23): 26704-26711, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34038080

ABSTRACT

Monitoring glucose levels in physiological fluids can help prevent severe complications associated with hypo- and hyper-glycemic events. Current glucose-monitoring systems require a three-electrode setup and a power source to function, which can hamper the system miniaturization to the patient discomfort. Enzymatic fuel cells (EFCs) offer the opportunity to develop self-powered and minimally invasive glucose sensors by eliminating the need for an external power source. Nevertheless, practical applications demand for cost-effective and mass-manufacturable EFCs compatible with integration strategies. In this study, we explore for the first time the use of gold electrodes on a printed circuit board (PCB) for the development of an EFC and demonstrate its application in saliva. To increase the specific surface area, the PCB gold-plated electrodes were modified with porous gold films. At the anode, glucose oxidase is immobilized with an osmium redox polymer that serves as an electron-transfer mediator. At the cathode, bilirubin oxidase is adsorbed onto the porous gold surface with a blocking agent that prevents parasitic reactions while maintaining the enzyme catalytic activity. The resulting EFC showed a linear response to glucose in phosphate buffer within the range 50 µM to 1 mM, with a sensitivity of 14.13 µA cm-2 mM-1. The sensor was further characterized in saliva, showing the linear range of detection of 0.75 to 2 mM, which is within the physiological range, and sensitivity of 21.5 µA cm-2 mM-1. Overall, this work demonstrates that PCBs are suitable platforms for EFCs, paving the way for the development of fully integrated systems in a seamless and miniaturized device.


Subject(s)
Biosensing Techniques/methods , Electrodes , Enzymes, Immobilized/metabolism , Glucose Oxidase/metabolism , Glucose/analysis , Oxygen/metabolism , Saliva/metabolism , Bioelectric Energy Sources , Catalysis , Enzymes, Immobilized/chemistry , Humans , Saliva/chemistry
10.
Water Sci Technol ; 60(11): 2879-87, 2009.
Article in English | MEDLINE | ID: mdl-19934509

ABSTRACT

This study reports an investigation of the effect of the anode surface area on the performance of a single chamber microbial fuel cell (SCMFC) based biosensor for measuring the organic content of wastewater. A packed bed of graphite granules was used as the anode. The surface area of the anode was changed by altering the granule bed thickness (0.3 cm and 1 cm). The anode surface area was found to play a role in the dynamic response of the system. For a granule bed thickness of 1 cm and with an external resistance of 500 Omega, the response time (defined as the time required to achieve 95% of the steady-state current) was reduced by approximately 65% in comparison to a SCMFC biosensor with a carbon cloth anode.


Subject(s)
Organic Chemicals/analysis , Waste Disposal, Fluid/methods , Water Microbiology/standards , Ammonium Chloride/analysis , Biosensing Techniques , Calcium Chloride/analysis , Chlorides/analysis , Copper Sulfate/analysis , Electrodes , Equipment Design , Magnesium Chloride/analysis , Manganese Compounds/analysis , Sulfates/analysis , Waste Disposal, Fluid/statistics & numerical data , Water/analysis , Zinc Compounds/analysis
11.
Biosens Bioelectron ; 102: 49-56, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29121559

ABSTRACT

Access to safe drinking water is a human right, crucial to combat inequalities, reduce poverty and allow sustainable development. In many areas of the world, however, this right is not guaranteed, in part because of the lack of easily deployable diagnostic tools. Low-cost and simple methods to test water supplies onsite can protect vulnerable communities from the impact of contaminants in drinking water. Ideally such devices would also be easy to dispose of so as to leave no trace, or have a detrimental effect on the environment. To this aim, we here report the first paper microbial fuel cell (pMFC) fabricated by screen-printing biodegradable carbon-based electrodes onto a single sheet of paper, and demonstrate its use as a shock sensor for bioactive compounds (e.g. formaldehyde) in water. We also show a simple route to enhance the sensor performance by folding back-to-back two pMFCs electrically connected in parallel. This promising proof of concept work can lead to a revolutionizing way of testing water at point of use, which is not only green, easy-to-operate and rapid, but is also affordable to all.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques/instrumentation , Formaldehyde/analysis , Paper , Water Pollutants, Chemical/analysis , Bioelectric Energy Sources/microbiology , Carbon/chemistry , Electrodes , Equipment Design , Water/analysis , Water Quality
12.
Drug Discov Today ; 22(2): 204-209, 2017 02.
Article in English | MEDLINE | ID: mdl-27780788

ABSTRACT

Since the discovery of protein kinase activity in 1954, close to 600 kinases have been discovered that have crucial roles in cell physiology. In several pathological conditions, aberrant protein kinase activity leads to abnormal cell and tissue physiology. Therefore, protein kinase inhibitors are investigated as potential treatments for several diseases, including dementia, diabetes, cancer and autoimmune and cardiovascular disease. Modern semiconductor technology has recently been applied to accelerate the discovery of novel protein kinase inhibitors that could become the standard-of-care drugs of tomorrow. Here, we describe current techniques and novel applications of semiconductor technologies in protein kinase inhibitor drug discovery.


Subject(s)
Protein Kinases/metabolism , Semiconductors , Drug Discovery , Phosphorylation , Protein Kinase Inhibitors , Surface Plasmon Resonance
13.
Biosens Bioelectron ; 87: 607-614, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27616286

ABSTRACT

Serious brain disorders, such as the Alzheimer's Disease (AD), are associated with a marked drop in the levels of important neurotransmitters, such as acetylcholine (ACh). Real time monitoring of such biomarkers can therefore play a critical role in enhancing AD therapies by allowing timely diagnosis, verifications of treatment effectiveness, and developments of new medicines. In this study, we present the first acetylcholine/oxygen hybrid enzymatic fuel cell for the self-powered on site detection of ACh in plasma, which is based on the combination of an enzymatic anode with a Pt cathode. Firstly, an effective acetylcholinesterase immobilized electrode was developed and its electrochemical performance evaluated. Highly porous gold was used as the electrode material, and the enzyme was immobilized via a one step rapid and simple procedure that does not require the use of harsh chemicals or any electrode/enzyme pre-treatments. The resulting enzymatic electrode was subsequently used as the anode of a miniature flow-through membrane-less fuel cell and showed excellent response to varying concentrations of ACh. The peak power generated by the fuel cell was 4nW at a voltage of 260mV and with a current density of 9µAcm-2. The limit of detection of the fuel cell sensor was 10µM, with an average response time as short as 3min. These exciting results open new horizons for point-of-care Alzheimer diagnosis and provide an attractive potential alternative to established methods that require laborious and time-consuming sample treatments and expensive instruments.


Subject(s)
Acetylcholine/blood , Acetylcholinesterase/metabolism , Alzheimer Disease/diagnosis , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Enzymes, Immobilized/metabolism , Acetylcholine/metabolism , Alzheimer Disease/blood , Alzheimer Disease/metabolism , Bioelectric Energy Sources , Biomarkers/blood , Biomarkers/metabolism , Electrodes , Equipment Design , Gold/chemistry , Humans , Platinum/chemistry , Point-of-Care Systems , Porosity
14.
Biosens Bioelectron ; 78: 411-417, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26655181

ABSTRACT

The development of self-powered wearable biodevices is highly attractive for a number of applications, such as health monitoring and drug delivery. Enzymatic fuel cells (EFCs) hold great potential as power sources for such devices, since they can generate power from physiological fluids and operate at body temperature. In this study, we present a cascade of three EFCs embedded in a compact and handy single channel device and we demonstrate for the first time power generation from iontophoresis extracts obtained from pig skin. The EFCs implement non-toxic highly-porous gold electrodes; an easy-to-reproduce procedure is adopted for the immobilization of glucose oxidase and laccase at the anode and cathode respectively; no external mediators are used; and the system design can easily be further miniaturized. When electrically connected in parallel, the EFCs generated a power output close to the sum of the power generated by each unit, with peak values of 0.7 µW (flow-through mode) and 0.4 µW (batch mode), at a glucose concentration of 27 mM. When the device was fed with transdermal extracts, containing only 30 µM of glucose, the average peak power was proportionally lower (0.004 µW).


Subject(s)
Bioelectric Energy Sources , Skin/chemistry , Tissue Extracts/chemistry , Animals , Enzymes, Immobilized/chemistry , Glucose/chemistry , Glucose Oxidase/chemistry , Laccase/chemistry , Swine
15.
Biosensors (Basel) ; 5(3): 450-70, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26193327

ABSTRACT

The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.


Subject(s)
Developing Countries , Water Quality/standards , Bioelectric Energy Sources , Biosensing Techniques , Fresh Water/analysis , Fresh Water/chemistry , Humans , Water Microbiology
16.
Biosens Bioelectron ; 69: 199-205, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25744600

ABSTRACT

Enzymatic biofuel cells (EBFCs) can generate energy from metabolites present in physiological fluids. They represent an attractive alternative to lithium batteries to power implantable devices, as they work at body temperature, are light and easy-to-miniaturise. To be implantable in blood vessels, EBFCs should not only be made of non-toxic and biocompatible compounds but should also be able to operate in continuous flow-through mode. The EBFC devices reported so far, however, implement carbon-based materials of questionable toxicity and stability, such as carbon nanotubes, and rely on the use of external redox mediators for the electrical connection between the enzyme and the electrode. With this study, we demonstrate for the first time continuous power generation by flow through miniature enzymatic biofuel cells fed with an aerated solution of glucose and no redox mediators. Non-toxic highly porous gold was used as the electrode material and the immobilisation of the enzymes onto the electrodes surface was performed via cost-effective and easy-to-reproduce methodologies. The results presented here are a significant step towards the development of revolutionary implantable medical devices that extract the power they require from metabolites in the body.


Subject(s)
Electrodes , Energy Transfer , Glucose Oxidase/chemistry , Glucose/chemistry , Laccase/chemistry , Microfluidics/instrumentation , Bioelectric Energy Sources , Equipment Design , Equipment Failure Analysis , Miniaturization , Printing, Three-Dimensional
17.
Sci Rep ; 5: 8687, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25732235

ABSTRACT

Phosphorylation by kinases is an important post-translational modification of proteins. It is a critical control for the regulation of vital cellular activities, and its dysregulation is implicated in several diseases. A common drug discovery approach involves, therefore, time-consuming screenings of large libraries of candidate compounds to identify novel inhibitors of protein kinases. In this work, we propose a novel method that combines localized surface plasmon resonance (LSPR) and electrolyte insulator semiconductor (EIS)-based proton detection for the rapid identification of novel protein kinase inhibitors. In particular, the selective detection of thiophosphorylated proteins by LSPR is achieved by changing their resonance properties via a pre-binding with gold nanoparticles. In parallel, the EIS field-effect structure allows the real-time electrochemical monitoring of the protein phosphorylation by detecting the release of protons associated with the kinases activity. This innovative combination of both field-effect and nanoplasmonic sensing makes the detection of protein phosphorylation more reliable and effective. As a result, the screening of protein kinase inhibitors becomes more rapid, sensitive, robust and cost-effective.


Subject(s)
Biosensing Techniques , Proteins/metabolism , Surface Plasmon Resonance/methods , Phosphorylation , Surface Plasmon Resonance/instrumentation
18.
Biosens Bioelectron ; 71: 121-128, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25897881

ABSTRACT

Protein kinases are cellular switches that mediate phosphorylation of proteins. Abnormal phosphorylation of proteins is associated with lethal diseases such as cancer. In the pharmaceutical industry, protein kinases have become an important class of drug targets. This study reports a versatile approach for the detection of protein phosphorylation. The change in charge of the myelin basic protein upon phosphorylation by the protein kinase C-alpha (PKC-α) in the presence of adenosine 5'-[γ-thio] triphosphate (ATP-S) was detected on gold metal-insulator-semiconductor (Au-MIS) capacitor structures. Gold nanoparticles (AuNPs) can then be attached to the thio-phosphorylated proteins, forming a Au-film/AuNP plasmonic couple. This was detected by a localized surface plasmon resonance (LSPR) technique alongside MIS capacitance. All reactions were validated using surface plasmon resonance technique and the interaction of AuNPs with the thio-phosphorylated proteins quantified by quartz crystal microbalance. The plasmonic coupling was also visualized by simulations using finite element analysis. The use of this approach in drug discovery applications was demonstrated by evaluating the response in the presence of a known inhibitor of PKC-α kinase. LSPR and MIS on a single platform act as a cross check mechanism for validating kinase activity and make the system robust to test novel inhibitors.


Subject(s)
Drug Discovery/instrumentation , Myelin Basic Protein/metabolism , Protein Kinase C-alpha/metabolism , Surface Plasmon Resonance/instrumentation , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Animals , Cattle , Cell Line , Equipment Design , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Phosphorylation/drug effects , Quartz Crystal Microbalance Techniques , Semiconductors
19.
Biosens Bioelectron ; 54: 109-14, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24252767

ABSTRACT

Phosphorylation is the most important post-translational modification of proteins in eukaryotic cells and it is catalysed by enzymes called kinases. The balance between protein phosphorylation and dephosphorylation is critical for the regulation of physiological processes and its unbalance is the cause of several diseases. Conventional assays used to analyse the kinase activity are limited as they rely heavily on phospho-specific antibodies and radioactive tags. This makes their use impractical for high throughput drug discovery platforms. We have developed two versatile methods to detect the release of protons (H(+)) associated with the protein phosphorylation catalysed by kinases. The first approach is based on the pH-sensitive response of oxide-semiconductor interfaces and the second method detects the pH changes in phosphorylation reaction using a commercial micro-pH electrode. The proposed methods successfully detected phosphorylation of myelin basic protein by PKC-α kinase. These techniques can be readily adopted for multiplexed arrays and high throughput analysis of kinase activity, which will represent an important innovation in biomedical research and drug discovery.


Subject(s)
Biosensing Techniques/instrumentation , Myelin Basic Protein/metabolism , Protein Kinase C-alpha/metabolism , Animals , Drug Discovery/instrumentation , Equipment Design , Humans , Hydrogen-Ion Concentration , Phosphorylation , Protons , Semiconductors
20.
Biosens Bioelectron ; 62: 182-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25005554

ABSTRACT

The heavy use of chemicals for agricultural, industrial and domestic purposes has increased the risk of freshwater contamination worldwide. Consequently, the demand for efficient new analytical tools for on-line and on-site water quality monitoring has become particularly urgent. In this study, a small-scale single chamber air-cathode microbial fuel cell (SCMFC), fabricated by rapid prototyping layer-by-layer 3D printing, was tested as a biosensor for continuous water quality monitoring. When acetate was fed as the rate-limiting substrate, the SCMFC acted as a sensor for chemical oxygen demand (COD) in water. The linear detection range was 3-164 ppm, with a sensitivity of 0.05 µA mM(-1) cm(-2) with respect to the anode total surface area. The response time was as fast as 2.8 min. At saturating acetate concentrations (COD>164 ppm), the miniature SCMFC could rapidly detect the presence of cadmium in water with high sensitivity (0.2 µg l(-1) cm(-2)) and a lower detection limit of only 1 µg l(-1). The biosensor dynamic range was 1-25 µg l(-1). Within this range of concentrations, cadmium affected only temporarily the electroactive biofilm at the anode. When the SCMFCs were again fed with fresh wastewater and no pollutant, the initial steady-state current was recovered within 12 min.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques/methods , Fresh Water/analysis , Water Pollutants, Chemical/analysis , Air , Cadmium/analysis , Electrodes , Equipment Design , Limit of Detection , Online Systems , Printing, Three-Dimensional , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL