Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Int J Cancer ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031959

ABSTRACT

Oxford Nanopore Technologies sequencing, also referred to as Nanopore sequencing, stands at the forefront of a revolution in clinical genetics, offering the potential for rapid, long read, and real-time DNA and RNA sequencing. This technology is currently making sequencing more accessible and affordable. In this comprehensive review, we explore its potential regarding precision cancer diagnostics and treatment. We encompass a critical analysis of clinical cases where Nanopore sequencing was successfully applied to identify point mutations, splice variants, gene fusions, epigenetic modifications, non-coding RNAs, and other pivotal biomarkers that defined subsequent treatment strategies. Additionally, we address the challenges of clinical applications of Nanopore sequencing and discuss the current efforts to overcome them.

2.
IUBMB Life ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166889

ABSTRACT

Lectins are carbohydrate-binding proteins, whose biological effects are exerted via binding to glycoconjugates expressed on the surface of cells. Exposure to lectins can lead not only to a change in the structure and properties of cells but also to their death. Here, we studied the biological activity of lectins from the mussels Crenomytilus graynus (CGL) and Mytilus trossulus (MTL) and showed that these proteins can affect the proliferation of human lymphoma cells. Both lectins suppressed the formation of colonies as well as cell cycle progression. The mechanism of action of these lectins was not mediated by reactive oxygen species but included damaging of mitochondria, inhibition of key cell cycle points, and activation of MAPK signaling pathway in tumor cells. Computer modeling suggested that various effects of CGL and MTL on lymphoma cells may be due to the difference in the energy of binding of these lectins to carbohydrate ligands on the cell surface. Thus, molecular recognition of residues of terminal carbohydrates on the surface of tumor cells is a key factor in the manifestation of the biological action of lectins.

3.
World J Urol ; 42(1): 256, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656636

ABSTRACT

INTRODUCTION: We evaluated the prognostic role of pre-salvage prostate-specific membrane antigen-radioguided surgery (PSMA-RGS) serum levels of alkaline phosphatase (AP), carcinoembryonic antigen (CEA), lactate dehydrogenase (LDH), and neuron-specific enolase (NSE). MATERIALS AND METHODS: Patients who consecutively underwent PSMA-RGS for prostate cancer (PCa) oligorecurrence between January 2019 and January 2022 were selected. Biomarkers were assessed one day before surgery. Cox regression and logistic regression models tested the relationship between biochemical recurrence-free survival (BFS), 6- and 12-month biochemical recurrence (BCR), and several independent variables, including biomarkers. RESULTS: 153 consecutive patients were analyzed. In the univariable Cox regression analysis, none of the biomarkers achieved predictor status (AP: hazard ratio [HR] = 1.03, 95% CI 0.99, 1.01; p = 0.19; CEA: HR = 1.73, 95% CI 0.94, 1.21; p = 0.34; LDH: HR = 1.01, 95% CI 1.00, 1.01; p = 0.05; NSE: HR = 1.02, 95% CI 0.98, 1.06; p = 0.39). The only independent predictor of BFS was the number of positive lesions on PSMA PET (HR = 1.17, 95% CI 1.02, 1.30; p = 0.03). The number of positive lesions was confirmed as independent predictor for BCR within 6 and 12 months (BCR < 6 months: odds ratio [OR] = 1.1, 95% CI 1.0, 1.3; p = 0.04; BCR < 12 months: OR = 1.1, 95% CI 1.0, 1.3; p = 0.04). CONCLUSION: The assessment of AP, CEA, LDH, and NSE before salvage PSMA-RGS showed no prognostic impact. Further studies are needed to identify possible predictors that will optimize patient selection for salvage PSMA-RGS.


Subject(s)
Alkaline Phosphatase , Biomarkers, Tumor , Carcinoembryonic Antigen , L-Lactate Dehydrogenase , Neoplasm Recurrence, Local , Phosphopyruvate Hydratase , Prostatic Neoplasms , Aged , Humans , Male , Middle Aged , Alkaline Phosphatase/blood , Antigens, Surface/blood , Biomarkers, Tumor/blood , Carcinoembryonic Antigen/blood , Glutamate Carboxypeptidase II/blood , L-Lactate Dehydrogenase/blood , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/diagnostic imaging , Phosphopyruvate Hydratase/blood , Prognosis , Prostatectomy/methods , Prostatic Neoplasms/blood , Prostatic Neoplasms/surgery , Prostatic Neoplasms/therapy , Retrospective Studies
4.
Mar Drugs ; 22(9)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39330277

ABSTRACT

Stonikacidin A (1), the first representative of a new class of 4-bromopyrrole alkaloids containing an aldonic acid core, was isolated from the marine sponge Lissodendoryx papillosa. The compound is named in honor of Prof. Valentin A. Stonik, who is one of the outstanding investigators in the field of marine natural chemistry. The structure of 1 was determined using NMR, MS analysis, and chemical correlations. The L-idonic acid core was established by the comparison of GC, NMR, MS, and optical rotation data of methyl-pentaacetyl-aldonates obtained from the hydrolysis products of 1 and standard hexoses. The L-form of the idonic acid residue in 1 was confirmed by GC analysis of pentaacetate of (S)-2-butyl ester of the hydrolysis product from 1 and compared with corresponding derivatives of L- and D-idonic acids. The biosynthetic pathway for stonikacidin A (1) was proposed. The alkaloid 1 inhibited the growth of Staphylococcus aureus and Escherichia coli test strains, as well as affected the formation of S. aureus and E. coli biofilms. Compound 1 inhibited the activity of sortase A. Molecular docking data showed that stonikacidin A (1) can bind with sortase A due to the interactions between its bromine atoms and some amino acid residues of the enzyme.


Subject(s)
Alkaloids , Escherichia coli , Porifera , Staphylococcus aureus , Animals , Porifera/chemistry , Staphylococcus aureus/drug effects , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Escherichia coli/drug effects , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/isolation & purification , Biofilms/drug effects , Microbial Sensitivity Tests , Bacterial Proteins , Pacific Ocean , Cysteine Endopeptidases , Aminoacyltransferases
5.
Mol Pharm ; 20(10): 4994-5005, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37733943

ABSTRACT

Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Proteomics , Apoptosis , Cell Proliferation , ErbB Receptors , Cell Line, Tumor , Brain Neoplasms/drug therapy
6.
Mar Drugs ; 21(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37623705

ABSTRACT

Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.


Subject(s)
Alkaloids , Antineoplastic Agents , Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Carbolines , DNA
7.
Mar Drugs ; 21(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36662227

ABSTRACT

Marine fungi serve as a valuable source for new bioactive molecules bearing various biological activities. In this study, we report on the isolation of a new indole diketopiperazine alkaloid deoxy-14,15-dehydroisoaustamide (1) from the marine-derived fungus Penicillium dimorphosporum KMM 4689 associated with a soft coral. The structure of this metabolite, including its absolute configuration, was determined by HR-MS, 1D and 2D NMR as well as CD data. Compound 1 is a very first deoxyisoaustamide alkaloid possessing two double bonds in the proline ring. The isolated compound was noncytotoxic to a panel of human normal and cancer cell lines up to 100 µM. At the same time, compound 1 resensitized prostate cancer 22Rv1 cells to androgen receptor (AR) blocker enzalutamide. The mechanism of this phenomenon was identified as specific drug-induced degradation of androgen receptor transcription variant V7 (AR-V7), which also resulted in general suppression of AR signaling. Our data suggest that the isolated alkaloid is a promising candidate for combinational therapy of castration resistant prostate cancer, including drug-resistant subtypes.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Nitriles/pharmacology , Nitriles/therapeutic use , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/metabolism
8.
Mar Drugs ; 22(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38248645

ABSTRACT

Despite recent advances in the treatment of metastatic castration-resistant prostate cancer (CRPC), treatment is inevitably hampered by the development of drug resistance. Thus, new drugs are urgently needed. We investigated the efficacy, toxicity, and mechanism of action of the marine triterpene glycoside cucumarioside A2-2 (CA2-2) using an in vitro CRPC model. CA2-2 induced a G2/M-phase cell cycle arrest in human prostate cancer PC-3 cells and caspase-dependent apoptosis executed via an intrinsic pathway. Additionally, the drug inhibited the formation and growth of CRPC cell colonies at low micromolar concentrations. A global proteome analysis performed using the 2D-PAGE technique, followed by MALDI-MS and bioinformatical evaluation, revealed alterations in the proteins involved in cellular processes such as metastatic potential, invasion, and apoptosis. Among others, the regulation of keratin 81, CrkII, IL-1ß, and cathepsin B could be identified by our proteomics approach. The effects were validated on the protein level by a 2D Western blotting analysis. Our results demonstrate the promising anticancer activity of CA2-2 in a prostate cancer model and provide insights on the underlying mode of action.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Triterpenes , Male , Humans , Glycosides/pharmacology , Triterpenes/pharmacology , Prostate
9.
Mar Drugs ; 21(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36976227

ABSTRACT

Five new ß-resorcylic acid derivatives, 14-hydroxyasperentin B (1), ß-resoantarctines A-C (3, 5, 6) and 8-dehydro-ß-resoantarctine A (4), together with known 14-hydroxyasperentin (5'-hydroxyasperentin) (2), were isolated from the ethyl acetate extract of the fungus Penicillium antarcticum KMM 4685 associated with the brown alga Sargassum miyabei. The structures of the compounds were elucidated by spectroscopic analyses and modified Mosher's method, and the biogenetic pathways for compounds 3-6 were proposed. For the very first time, the relative configuration of the C-14 center of a known compound 2 was assigned via analyses of magnitudes of the vicinal coupling constants. The new metabolites 3-6 were biogenically related to resorcylic acid lactones (RALs); however, they did not possess lactonized macrolide elements in their structures. Compounds 3, 4 and 5 exhibited moderate cytotoxic activity in LNCaP, DU145 and 22Rv1 human prostate cancer cells. Moreover, these metabolites could inhibit the activity of p-glycoprotein at their noncytotoxic concentrations and consequently synergize with docetaxel in p-glycoprotein-overexpressing drug-resistant cancer cells.


Subject(s)
Penicillium , Humans , Molecular Structure , Penicillium/chemistry , Fungi/chemistry
10.
Clin Chem ; 68(7): 973-983, 2022 07 03.
Article in English | MEDLINE | ID: mdl-35652463

ABSTRACT

BACKGROUND: Revealing molecular mechanisms linked to androgen receptor activity can help to improve diagnosis and treatment of prostate cancer. Retinoic acid-induced 2 (RAI2) protein is thought to act as a transcriptional coregulator involved in hormonal responses and epithelial differentiation. We evaluated the clinical relevance and biological function of the RAI2 protein in prostate cancer. METHODS: We assessed RAI2 gene expression in the Cancer Genome Atlas prostate adenocarcinoma PanCancer cohort and protein expression in primary tumors (n = 199) by immunohistochemistry. We studied RAI2 gene expression as part of a multimarker panel in an enriched circulating tumor cell population isolated from blood samples (n = 38) of patients with metastatic prostate cancer. In prostate cancer cell lines, we analyzed the consequences of androgen receptor inhibition on RAI2 protein expression and the consequences of RAI2 depletion on the expression of the androgen receptor and selected target genes. RESULTS: Abundance of the RAI2 protein in adenocarcinomas correlated with the androgen receptor; keratins 8, 18, and 19; and E-cadherin as well as with an early biochemical recurrence. In circulating tumor cells, detection of RAI2 mRNA significantly correlated with gene expression of FOLH1, KLK3, RAI2, AR, and AR-V7. In VCaP and LNCaP cell lines, sustained inhibition of hormone receptor activity induced the RAI2 protein, whereas RAI2 depletion augmented the expression of MME, STEAP4, and WIPI1. CONCLUSIONS: The RAI2 protein functions as a transcriptional coregulator of the androgen response in prostate cancer cells. Detection of RAI2 gene expression in blood samples from patients with metastatic prostate cancer indicated the presence of circulating tumor cells.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Neoplastic Cells, Circulating , Prostatic Neoplasms , Cell Line, Tumor , Co-Repressor Proteins , Humans , Male , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Tretinoin/pharmacology
11.
J Nat Prod ; 85(12): 2746-2752, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36413729

ABSTRACT

New meroterpenoids, meroantarctines A-C (1-3), with unique 6/5/6/6, 6/5/6/5/6, and 6/5/6/5 polycyclic systems were isolated from the alga-derived fungus Penicillium antarcticum KMM 4685. Their structures were elucidated by spectroscopic methods, X-ray diffraction, and quantum chemical calculations. A biogenetic pathway for 1-3 was proposed. Meroantarctines A-C (1-3) inhibited p-glycoprotein activity and could resensitize drug-resistant cancer cells to docetaxel.


Subject(s)
Fungi , Penicillium , Molecular Structure , X-Ray Diffraction , Penicillium/chemistry , ATP Binding Cassette Transporter, Subfamily B , Terpenes/chemistry
12.
Mar Drugs ; 20(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36286421

ABSTRACT

N-methylpretrichodermamide B (NB) is a biologically active epidithiodiketopiperazine isolated from several strains of the algae-derived fungus Penicillium sp. Recently, we reported the first data on its activity in human cancer cells lines in vitro. Here, we investigated the activity, selectivity, and mechanism of action of NB in human prostate cancer cell lines, including drug-resistant subtypes. NB did not reveal cross-resistance to docetaxel in the PC3-DR cell line model and was highly active in hormone-independent 22Rv1 cells. NB-induced cell death was stipulated by externalization of phosphatidylserine and activation of caspase-3. Moreover, inhibition of caspase activity by z-VAD(OMe)-fmk did not affect NB cytotoxicity, suggesting a caspase-independent cell death induced by NB. The compound has a moderate p-glycoprotein (p-gp) substrate-like affinity and can simultaneously inhibit p-gp at nanomolar concentrations. Therefore, NB resensitized p-gp-overexpressing PC3-DR cells to docetaxel. A kinome profiling of the NB-treated cells revealed, among other things, an induction of mitogen-activated protein kinases JNK1/2 and p38. Further functional analysis confirmed an activation of both kinases and indicated a prosurvival role of this biological event in the cellular response to the treatment. Overall, NB holds promising anticancer potential and further structure-activity relationship studies and structural optimization are needed in order to improve its biological properties.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Humans , Male , Antineoplastic Agents/pharmacology , Apoptosis , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , Caspase 3/metabolism , Cell Line, Tumor , Docetaxel/pharmacology , Drug Resistance, Neoplasm , Hormones/pharmacology , Phosphatidylserines/pharmacology , Prostatic Neoplasms/drug therapy
13.
Mar Drugs ; 20(7)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35877702

ABSTRACT

The cytotoxicity-bioassay-guided fractionation of the ethanol extract from the marine sponge Guitarra abbotti, whose 1-O-alkyl-sn-glycerol ethers (AGEs) have not been investigated so far, led to the isolation of a complex lipid fraction containing, along with previously known compounds, six new lipids of the AGE type. The composition of the AGE fraction as well as the structures of 6 new and 22 previously known compounds were established using 1H and 13C NMR, GC/MS, and chemical conversion methods. The new AGEs were identified as: 1-O-(Z-docos-15-enyl)-sn-glycerol (1), 1-O-(Z-docos-17-enyl)-sn-glycerol (2), 1-O-(Z-tricos-15-enyl)-sn-glycerol (3), 1-O-(Z-tricos-16-enyl)-sn-glycerol (4), 1-O-(Z-tricos-17-enyl)-sn-glycerol (5), and 1-O-(Z-tetracos-15-enyl)-sn-glycerol (6). The isolated AGEs show weak cytotoxic activity in THP-1, HL-60, HeLa, DLD-1, SNU C4, SK-MEL-28, and MDA-MB-231 human cancer cells. A further cytotoxicity analysis in JB6 P+ Cl41 cells bearing mutated MAP kinase genes revealed that ERK2 and JNK1 play a cytoprotective role in the cellular response to the AGE-induced cytotoxic effects.


Subject(s)
Ethers , Porifera , Animals , Ethers/pharmacology , Gas Chromatography-Mass Spectrometry , Glycerol/pharmacology , Glyceryl Ethers/pharmacology , Humans
14.
Mar Drugs ; 20(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36547885

ABSTRACT

Two new guanidine alkaloids, batzelladines O (1) and P (2), were isolated from the deep-water marine sponge Monanchora pulchra. The structures of these metabolites were determined by NMR spectroscopy, mass spectrometry, and ECD. The isolated compounds exhibited cytotoxic activity in human prostate cancer cells PC3, PC3-DR, and 22Rv1 at low micromolar concentrations and inhibited colony formation and survival of the cancer cells. Batzelladines O (1) and P (2) induced apoptosis, which was detected by Western blotting as caspase-3 and PARP cleavage. Additionally, induction of pro-survival autophagy indicated as upregulation of LC3B-II and suppression of mTOR was observed in the treated cells. In line with this, the combination with autophagy inhibitor 3-methyladenine synergistically increased the cytotoxic activity of batzelladines O (1) and P (2). Both compounds were equally active in docetaxel-sensitive and docetaxel-resistant prostate cancer cells, despite exhibiting a slight p-glycoprotein substrate-like activity. In combination with docetaxel, an additive effect was observed. In conclusion, the isolated new guanidine alkaloids are promising drug candidates for the treatment of taxane-resistant prostate cancer.


Subject(s)
Alkaloids , Antineoplastic Agents , Porifera , Prostatic Neoplasms , Animals , Male , Humans , Guanidine/pharmacology , Guanidine/chemistry , Docetaxel/pharmacology , Guanidines/pharmacology , Guanidines/chemistry , Porifera/chemistry , Apoptosis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Prostatic Neoplasms/drug therapy , Autophagy , Alkaloids/pharmacology , Alkaloids/chemistry
15.
Mar Drugs ; 20(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35323484

ABSTRACT

Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b']diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure-activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.


Subject(s)
Antineoplastic Agents , Indoles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , DNA/metabolism , Humans , Indoles/chemistry , Indoles/pharmacology , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Structure-Activity Relationship
16.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269712

ABSTRACT

Immunotherapeutic treatment approaches are now an integral part of the treatment of many solid tumors. However, attempts to integrate immunotherapy into the treatment of prostate cancer have been disappointing so far. This is due to a highly immunosuppressive, "cold" tumor microenvironment, which is characterized, for example, by the absence of cytotoxic T cells, an increased number of myeloid-derived suppressor cells or regulatory T cells, a decreased number of tumor antigens, or a defect in antigen presentation. The consequence is a reduced efficacy of many established immunotherapeutic treatments such as checkpoint inhibitors. However, a growing understanding of the underlying mechanisms of tumor-immune system interactions raises hopes that immunotherapeutic strategies can be optimized in the future. The aim of this review is to provide an overview of the current status and future directions of immunotherapy development in prostate cancer. Background information on immune response and tumor microenvironment will help to better understand current therapeutic strategies under preclinical and clinical development.


Subject(s)
Immunotherapy , Prostatic Neoplasms , Antigens, Neoplasm , Humans , Immunologic Factors , Male , Prostatic Neoplasms/pathology , T-Lymphocytes, Cytotoxic/pathology , Tumor Microenvironment
17.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499277

ABSTRACT

Significant progress has been achieved in the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, results in patients with aggressive variant prostate cancer (AVPC) have been disappointing. Here, we report retrospectively collected data from intensively pretreated AVPC patients (n = 17; 88.2% visceral metastases; 82% elevation of neuroendocrine markers) treated with salvage chemotherapy consisting of cisplatin, ifosfamide, and paclitaxel (TIP). At the interim analysis, 60% of patients showed radiographic response or stable disease (PFS = 2.5 months; OS = 6 months). In men who responded to chemotherapy, an OS > 15 months was observed. Preclinical analyses confirmed the high activity of the TIP regimen, especially in docetaxel-resistant prostate cancer cells. This effect was primarily mediated by increased cisplatin sensitivity in the emergence of taxane resistance. Proteomic and functional analyses identified a lower DNA repair capacity and cell cycle machinery deficiency to be causative. In contrast, paclitaxel showed inconsistent effects, partially antagonizing cisplatin and ifosfamide in some AVPC models. Consequently, paclitaxel has been excluded from the TIP combination for future patients. In summary, we report for the first time the promising efficacy of TIP as salvage therapy in AVPC. Our preclinical data indicate a pivotal role for cisplatin in overcoming docetaxel resistance.


Subject(s)
Paclitaxel , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Paclitaxel/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Retrospective Studies , Proteomics , Cisplatin/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Salvage Therapy/methods , Docetaxel/therapeutic use , Treatment Outcome
18.
Mar Drugs ; 18(9)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872590

ABSTRACT

Seven new polyoxygenated steroids belonging to a new structural group of sponge steroids, gracilosulfates A-G (1-7), possessing 3ß-O-sulfonato, 5ß,6ß epoxy (or 5(6)-dehydro), and 4ß,23-dihydroxy substitution patterns as a common structural motif, were isolated from the marine sponge Haliclona gracilis. Their structures were determined by NMR and MS methods. The compounds 1, 2, 4, 6, and 7 inhibited the expression of prostate-specific antigen (PSA) in 22Rv1 tumor cells.


Subject(s)
Antineoplastic Agents/pharmacology , Haliclona/metabolism , Prostatic Neoplasms/drug therapy , Steroids/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Humans , Kallikreins/metabolism , Male , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Steroids/chemistry , Steroids/isolation & purification
19.
Mar Drugs ; 18(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271756

ABSTRACT

Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Resistance, Neoplasm , Oxindoles/pharmacology , Prostatic Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Humans , Male , Mitogen-Activated Protein Kinases/metabolism , PC-3 Cells , Phosphorylation , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Receptors, Androgen/metabolism , Signal Transduction
20.
Molecules ; 25(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348592

ABSTRACT

Actinoporins are the most abundant group of sea anemone cytolytic toxins. Their membranolytic activity is of high interest for the development of novel anticancer drugs. However, to date the activity of actinoporins in malignant cells has been poorly studied. Here, we report on recombinant analog of Hct-S3 (rHct-S3), belonging to the combinatory library of Heteractis crispa actinoporins. rHct-S3 exhibited cytotoxic activity against breast MDA-MB-231 (IC50 = 7.3 µM), colorectal HT-29 (IC50 = 6.8 µM), and melanoma SK-MEL-28 (IC50 = 8.3 µM) cancer cells. The actinoporin effectively prevented epidermal growth factor -induced neoplastic transformation of JB6 Cl41 cells by 34% ± 0.2 and decreased colony formation of HT-29 cells by 47% ± 0.9, MDA-MB-231 cells by 37% ± 1.2, and SK-MEL-28 cells by 34% ± 3.6. Moreover, rHct-S3 decreased proliferation and suppressed migration of colorectal carcinoma cells by 31% ± 5.0 and 99% ± 6.4, respectively. The potent anti-migratory activity was proposed to mediate by decreased matrix metalloproteinases-2 and -9 expression. In addition, rHct-S3 induced programmed cell death by cleavage of caspase-3 and poly (ADP-ribose) polymerase, as well as regulation of Bax and Bcl-2. Our results indicate rHct-S3 to be a promising anticancer drug with a high anti-migratory potential.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Cnidarian Venoms/pharmacology , Colorectal Neoplasms/drug therapy , Sea Anemones/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Colorectal Neoplasms/pathology , Female , HT29 Cells , Humans , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Melanoma/drug therapy , Melanoma/pathology , Poly(ADP-ribose) Polymerases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL