Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.994
Filter
Add more filters

Publication year range
1.
Eur Heart J ; 45(18): 1613-1630, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38596850

ABSTRACT

BACKGROUND AND AIMS: Increasing data suggest that stress-related neural activity (SNA) is associated with subsequent major adverse cardiovascular events (MACE) and may represent a therapeutic target. Current evidence is exclusively based on populations from the U.S. and Asia where limited information about cardiovascular disease risk was available. This study sought to investigate whether SNA imaging has clinical value in a well-characterized cohort of cardiovascular patients in Europe. METHODS: In this single-centre study, a total of 963 patients (mean age 58.4 ± 16.1 years, 40.7% female) with known cardiovascular status, ranging from 'at-risk' to manifest disease, and without active cancer underwent 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography between 1 January 2005 and 31 August 2019. Stress-related neural activity was assessed with validated methods and relations between SNA and MACE (non-fatal stroke, non-fatal myocardial infarction, coronary revascularization, and cardiovascular death) or all-cause mortality by time-to-event analysis. RESULTS: Over a maximum follow-up of 17 years, 118 individuals (12.3%) experienced MACE, and 270 (28.0%) died. In univariate analyses, SNA significantly correlated with an increased risk of MACE (sub-distribution hazard ratio 1.52, 95% CI 1.05-2.19; P = .026) or death (hazard ratio 2.49, 95% CI 1.96-3.17; P < .001). In multivariable analyses, the association between SNA imaging and MACE was lost when details of the cardiovascular status were added to the models. Conversely, the relationship between SNA imaging and all-cause mortality persisted after multivariable adjustments. CONCLUSIONS: In a European patient cohort where cardiovascular status is known, SNA imaging is a robust and independent predictor of all-cause mortality, but its prognostic value for MACE is less evident. Further studies should define specific patient populations that might profit from SNA imaging.


Subject(s)
Positron Emission Tomography Computed Tomography , Humans , Female , Male , Middle Aged , Prognosis , Positron Emission Tomography Computed Tomography/methods , Aged , Europe/epidemiology , Cardiovascular Diseases/mortality , Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Heart/diagnostic imaging
2.
Clin Infect Dis ; 78(4): 949-955, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38330243

ABSTRACT

BACKGROUND: Since publication of Duke criteria for infective endocarditis (IE) diagnosis, several modifications have been proposed. We aimed to evaluate the diagnostic performance of the Duke-ISCVID (International Society of Cardiovascular Infectious Diseases) 2023 criteria compared to prior versions from 2000 (Duke-Li 2000) and 2015 (Duke-ESC [European Society for Cardiology] 2015). METHODS: This study was conducted at 2 university hospitals between 2014 and 2022 among patients with suspected IE. A case was classified as IE (final IE diagnosis) by the Endocarditis Team. Sensitivity for each version of the Duke criteria was calculated among patients with confirmed IE based on pathological, surgical, and microbiological data. Specificity for each version of the Duke criteria was calculated among patients with suspected IE for whom IE diagnosis was ruled out. RESULTS: In total, 2132 episodes with suspected IE were included, of which 1101 (52%) had final IE diagnosis. Definite IE by pathologic criteria was found in 285 (13%), 285 (13%), and 345 (16%) patients using the Duke-Li 2000, Duke-ESC 2015, or the Duke-ISCVID 2023 criteria, respectively. IE was excluded by histopathology in 25 (1%) patients. The Duke-ISCVID 2023 clinical criteria showed a higher sensitivity (84%) compared to previous versions (70%). However, specificity of the new clinical criteria was lower (60%) compared to previous versions (74%). CONCLUSIONS: The Duke-ISCVID 2023 criteria led to an increase in sensitivity compared to previous versions. Further studies are needed to evaluate items that could increase sensitivity by reducing the number of IE patients misclassified as possible, but without having detrimental effect on specificity of Duke criteria.


Subject(s)
Communicable Diseases , Endocarditis, Bacterial , Endocarditis , Heart Valve Prosthesis , Humans , Endocarditis, Bacterial/diagnosis , Endocarditis/diagnosis , Heart Valve Prosthesis/microbiology , Fluorodeoxyglucose F18
3.
Neuroimage ; 300: 120873, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39341474

ABSTRACT

Introduction SUV measurements from static brain [18F]FDG PET acquisitions are a commonly used tool in preclinical research, providing a simple alternative for kinetic modelling, which requires complex and time-consuming dynamic acquisitions. However, SUV can be severely affected by the animal handling and preconditioning protocols, primarily by those that may induce changes in blood glucose levels (BGL). Here, we aimed at developing and investigating the feasibility of SUV-based approaches for a wide range of BGL far beyond normal values, and consequently, to develop and validate a new model to generate standardized and reproducible SUV measurements for any BGL. Material and methods We performed dynamic and static brain [18F]FDG PET acquisitions in 52 male Sprague-Dawley rats sorted into control (n = 10), non-fasting (n = 14), insulin-induced hypoglycemia (n = 12) and glucagon-induced hyperglycemia (n = 16) groups. Brain [18F]FDG PET images were cropped, aligned and co-registered to a standard template to calculate whole-brain and regional SUV. Cerebral Metabolic Rate of Glucose (CMRglc) was also estimated from 2-Tissue Compartment Model (2TCM) and Patlak plot for validation purposes. Results Our results showed that BGL=100±6 mg/dL can be considered a reproducible reference value for normoglycemia. Furthermore, we successfully established a 2nd-degree polynomial model (C1=0.66E-4, C2=-0.0408 and C3=7.298) relying exclusively on BGL measures at pre-[18F]FDG injection time, that characterizes more precisely the relationship between SUV and BGL for a wide range of BGL values (from 10 to 338 mg/dL). We confirmed the ability of this model to generate corrected SUV estimations that are highly correlated to CMRglc estimations (R2= 0.54 2TCM CMRgluc and R2= 0.49 Patlak CMRgluc). Besides, slight regional differences in SUV were found in animals from extreme BGL groups, showing that [18F]FDG uptake is mostly directed toward central regions of the brain when BGLs are significantly decreased. Conclusion Our study successfully established a non-linear model that relies exclusively on pre-scan BGL measurements to characterize the relationship between [18F]FDG SUV and BGL. The extensive validation confirmed its ability to generate SUV-based surrogates of CMRglu along a wide range of BGL and it holds the potential to be adopted as a standard protocol by the preclinical neuroimaging community using brain [18F]FDG PET imaging.


Subject(s)
Blood Glucose , Brain , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Radiopharmaceuticals , Rats, Sprague-Dawley , Animals , Fluorodeoxyglucose F18/pharmacokinetics , Male , Positron-Emission Tomography/methods , Positron-Emission Tomography/standards , Brain/diagnostic imaging , Brain/metabolism , Blood Glucose/metabolism , Rats , Hypoglycemia/diagnostic imaging , Hypoglycemia/metabolism , Hyperglycemia/diagnostic imaging , Hyperglycemia/metabolism
4.
Curr Issues Mol Biol ; 46(5): 4506-4518, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38785541

ABSTRACT

The memory-enhancing activity of Matricaria chamomilla hydroalcoholic extract (MCE) is already being investigated by behavioral and biochemical assays in scopolamine-induced amnesia rat models, while the effects of scopolamine (Sco) on cerebral glucose metabolism are examined as well. Nevertheless, the study of the metabolic profile determined by an enriched MCE has not been performed before. The present experiments compared metabolic quantification in characteristic cerebral regions and behavioral characteristics for normal, only diseased, diseased, and MCE- vs. Galantamine (Gal)-treated Wistar rats. A memory deficit was induced by four weeks of daily intraperitoneal Sco injection. Starting on the eighth day, the treatment was intraperitoneally administered 30 min after Sco injection for a period of three weeks. The memory assessment comprised three maze tests. Glucose metabolism was quantified after the 18F-FDG PET examination. The right amygdala, piriform, and entorhinal cortex showed the highest differential radiopharmaceutical uptake of the 50 regions analyzed. Rats treated with MCE show metabolic similarity with normal rats, while the Gal-treated group shows features closer to the diseased group. Behavioral assessments evidenced a less anxious status and a better locomotor activity manifested by the MCE-treated group compared to the Gal-treated group. These findings prove evident metabolic ameliorative qualities of MCE over Gal classic treatment, suggesting that the extract could be a potent neuropharmacological agent against amnesia.

5.
Oncologist ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39045652

ABSTRACT

BACKGROUND: Neoadjuvant treatment has been developed as a systematic approach for patients with early breast cancer and has resulted in improved breast-conserving rate and survival. However, identifying treatment-sensitive patients at the early phase of therapy remains a problem, hampering disease management and raising the possibility of disease progression during treatment. METHODS: In this retrospective analysis, we collected 2-deoxy-2-[F-18] fluoro-d-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) images of primary tumor sites and axillary areas and reciprocal clinical pathological data from 121 patients who underwent neoadjuvant treatment and surgery in our center. The univariate and multivariate logistic regression analyses were performed to investigate features associated with pathological complete response (pCR). An 18F-FDG PET/CT-based prediction model was trained, and the performance was evaluated by receiver operating characteristic curves (ROC). RESULTS: The maximum standard uptake values (SUVmax) of 18F-FDG PET/CT were a powerful indicator of tumor status. The SUVmax values of axillary areas were closely related to metastatic lymph node counts (R = 0.62). Moreover, the early SUVmax reduction rates (between baseline and second cycle of neoadjuvant treatment) were statistically different between pCR and non-pCR patients. The early SUVmax reduction rates-based model showed great ability to predict pCR (AUC = 0.89), with all molecular subtypes (HR+HER2-, HR+HER2+, HR-HER2+, and HR-HER2-) considered. CONCLUSION: Our research proved that the SUVmax reduction rate of 18F-FDG PET/CT contributed to the early prediction of pCR, providing rationales for utilizing PET/CT in NAT in the future.

6.
Hum Brain Mapp ; 45(14): e70026, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39300894

ABSTRACT

Metabolic network analysis in Parkinson's disease (PD) based on 18F-FDG PET has revealed PD-related metabolic patterns. However, alterations at the systemic metabolic network level and at the connection level between different brain regions still remain unknown. This study aimed to explore metabolic network alterations at multiple network levels among PD patients using an individual-specific metabolic network (ISMN) approach. 18F-FDG-PET images of patients with PD (n = 34) and healthy subjects (n = 47) were collected. Healthy subjects were further separated into reference group (n = 28) and control group (n = 19) randomly. Standardized uptake value normalized by lean body mass ratio (SULr) maps was calculated from the PET images. ISMNs were constructed based on SULr maps for PD patients and controls with reference to the reference group. Comparisons of nodal and edge features were performed between PD and control groups. Correlation analysis was conducted between multilevel network properties and clinical scales in PD group. A linear classifier was trained based on nodal or edge features to distinguish PD from controls. The distance from each patient's ISMN to the group-level difference network showed a negative correlation with Hoehn and Yahr stage (r = -0.390, p = .023). Eight nodes from ISMN were identified which exhibited significantly increased nodal degree in PD patients compared to controls (p < .05). Eleven edges were observed which demonstrated significant distinctions in Z-score values in comparisons to the control group (p < .05). Furthermore, the nodal and edge features showed comparable performances in PD diagnosis compared to the traditional SULr values, with area under the receiver operating characteristic curve larger than 0.91. The proposed ISMN approach revealed systemic metabolic deviations, as well as nodal and edge distinctions in PD, which might be supplementary to the existing findings on PD-related metabolic patterns.


Subject(s)
Fluorodeoxyglucose F18 , Metabolic Networks and Pathways , Parkinson Disease , Positron-Emission Tomography , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Male , Female , Positron-Emission Tomography/methods , Middle Aged , Aged , Radiopharmaceuticals , Brain/diagnostic imaging , Brain/metabolism
7.
J Neuroinflammation ; 21(1): 129, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745337

ABSTRACT

Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.


Subject(s)
Adaptive Immunity , Amyloidosis , Brain , Diet, Western , Disease Models, Animal , Mice, Transgenic , Animals , Mice , Brain/metabolism , Brain/pathology , Brain/diagnostic imaging , Brain/immunology , Amyloidosis/metabolism , Amyloidosis/pathology , Amyloidosis/immunology , Diet, Western/adverse effects , Mice, Inbred C57BL , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/immunology
8.
J Neurosci Res ; 102(9): e25387, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39314180

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUD) are characterized by exacerbated motor and risk-related impulsivities, which are associated with decreased cortical activity. In rodents, the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been separately implicated in impulsive behaviors, but studies on the specific role of the mPFC-NAc pathway in these behaviors are limited. Here, we investigated whether heightened impulsive behaviors are associated with reduced mPFC activity in rodents and determined the involvement of the mPFC-NAc pathway in motor and risk-related impulsivities. We used the Roman High- (RHA) and Low-Avoidance (RLA) rat lines, which display divergent phenotypes in impulsivity. To investigate alterations in cortical activity in relation to impulsivity, regional brain glucose metabolism was measured using positron emission tomography and [18F]-fluorodeoxyglucose ([18F]FDG). Using chemogenetics, the activity of the mPFC-NAc pathway was either selectively activated in high-impulsive RHA rats or inhibited in low-impulsive RLA rats, and the effects of these manipulations on motor and risk-related impulsivity were concurrently assessed using the rat gambling task. We showed that basal [18F]FDG uptake was lower in the mPFC and NAc of RHA compared to RLA rats. Activation of the mPFC-NAc pathway in RHA rats reduced motor impulsivity, without affecting risk-related decision-making. Conversely, inhibition of the mPFC-NAc pathway had no effect in RLA rats. Our results suggest that the mPFC-NAc pathway controls motor impulsivity, but has limited involvement in risk-related decision-making in our current model. Our findings suggest that reducing fronto-striatal activity may help attenuate motor impulsivity in patients with impulse control dysregulation.


Subject(s)
Decision Making , Impulsive Behavior , Nucleus Accumbens , Prefrontal Cortex , Animals , Impulsive Behavior/physiology , Prefrontal Cortex/metabolism , Male , Nucleus Accumbens/metabolism , Rats , Decision Making/physiology , Neural Pathways/physiology , Risk-Taking , Positron-Emission Tomography , Motor Activity/physiology
9.
J Neurosci Res ; 102(4): e25327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588037

ABSTRACT

Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.


Subject(s)
Cannabidiol , Cocaine , Mice , Animals , Male , Cannabidiol/pharmacology , Cannabidiol/metabolism , Glucose/metabolism , Fluorodeoxyglucose F18/metabolism , Brain/metabolism , Cocaine/pharmacology , Mice, Inbred C57BL
10.
Basic Res Cardiol ; 119(5): 807-829, 2024 10.
Article in English | MEDLINE | ID: mdl-38922408

ABSTRACT

Combined [18F]FDG PET-cardiac MRI imaging (PET/CMR) is a useful tool to assess myocardial viability and cardiac function in patients with acute myocardial infarction (AMI). Here, we evaluated the prognostic value of PET/CMR in a porcine closed-chest reperfused AMI (rAMI) model. Late gadolinium enhancement by PET/CMR imaging displayed tracer uptake defect at the infarction site by 3 days after the rAMI in the majority of the animals (group Match, n = 28). Increased [18F]FDG uptake at the infarcted area (metabolism/contractility mismatch) with reduced tracer uptake in the remote viable myocardium (group Mismatch, n = 12) 3 days after rAMI was observed in the animals with larger infarct size and worse left ventricular ejection fraction (LVEF) (34 ± 8.7 vs 42.0 ± 5.2%), with lower LVEF also at the 1-month follow-up (35.8 ± 9.5 vs 43.0 ± 6.3%). Transcriptome analyses by bulk and single-nuclei RNA sequencing of the infarcted myocardium and border zones (n = 3 of each group, and 3 sham-operated controls) revealed a strong inflammatory response with infiltration of monocytes and macrophages in the infarcted and border areas in Mismatch animals. Our data indicate a high prognostic relevance of combined PET/MRI in the subacute phase of rAMI for subsequent impairment of heart function and underline the adverse effects of an excessive activation of the innate immune system in the initial phase after rAMI.


Subject(s)
Disease Models, Animal , Fluorodeoxyglucose F18 , Myocardial Infarction , Myocardium , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Fluorodeoxyglucose F18/metabolism , Myocardium/metabolism , Myocardium/pathology , Ventricular Function, Left , RNA-Seq , Multimodal Imaging , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine , Stroke Volume , Sus scrofa , Male
11.
J Transl Med ; 22(1): 558, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862971

ABSTRACT

PURPOSE: The purpose of the study was to evaluate the expression and function of basic leucine zipper ATF-like transcription factor (BATF) in colorectal cancer (CRC), and its correlation with 2-deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) parameters. METHODS: The TIMER database, GEPIA database, TCGA, and GEO database were used to analyze the expression profile of BATF in human cancers. The reverse transcription­quantitative PCR and western blot analyses were used to evaluate the mRNA level and protein expression in different CRC cell lines. The expression of BATF in SW620 and HCT116 cells was silenced and cell counting kit-8 assays and clonogenic assay were utilized to evaluate the role of BATF in CRC proliferation. The expression of tumor BATF and glucose transporter 1 (GLUT-1) were examined using immunohistochemical tools in 37 CRC patients undergoing preoperative 18F-FDG PET/CT imaging. The correlation between the PET/CT parameters and immunohistochemical result was evaluated. RESULTS: In database, BATF was highly expressed in pan-cancer analyses, including CRC, and was associated with poor prognosis in CRC. In vitro, the results showed that knocking down of BATF expression could inhibit the proliferation of SW620 and HCT116 cells. In CRC patients, BATF expression was upregulated in tumor tissues compared with matched para-tumoral tissues, and was related with gender and Ki-67 levels. BATF expression was positively related to GLUT-1 expression and PET/CT parameters, including tumor size, maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis. The multiple logistic analyses showed that SUVmax was an independent predictor of BATF expression. With 15.96 g/cm3 as the cutoff, sensitivity was 85.71%, specificity 82.61%, and area-under-the-curve 0.854. CONCLUSION: BATF may be an oncogene associated with 18F-FDG PET/CT parameters in CRC. SUVmax may be an independent predictor of BATF expression.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Proliferation , Colorectal Neoplasms , Disease Progression , Fluorodeoxyglucose F18 , Gene Expression Regulation, Neoplastic , Positron Emission Tomography Computed Tomography , Humans , Fluorodeoxyglucose F18/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Female , Male , Cell Line, Tumor , Middle Aged , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Aged
12.
Article in English | MEDLINE | ID: mdl-38244563

ABSTRACT

OBJECTIVES: Sarcoidosis is a multisystemic granulomatosis diagnosed mainly in young adults.18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) is useful in sarcoidosis cases to search for a biopsiable site or assess disease activity.18F-FDG PET-CT can reveal bone hypermetabolism in sarcoidosis patients, even in the absence of osteoarticular symptoms. The aim of this study was to describe metabolic bone involvement in sarcoidosis patients and to evaluate its prognostic impact. METHODS: This was an observational, comparative, retrospective, monocentric study. Inclusion criteria were a confirmed diagnosis of sarcoidosis according to the World Association of Sarcoidosis and Other Granulomatous Diseases (WASOG) criteria and at least one 18F-FDG PET-CT scan during follow-up. Metabolic bone involvement of sarcoidosis was defined as focal bone hypermetabolism with no argument for a differential diagnosis of bone 18F-FDG uptake. Patients with and without bone involvement were compared. RESULTS: Among the 175 included patients, 32 (18%) had metabolic bone involvement of sarcoidosis. The metabolic bone involvement was mainly axial and mostly without bone abnormalities on CT. Metabolic bone involvement was associated with intrathoracic and extrathoracic lymph node involvement and with a higher number of organs involved. Patients with metabolic bone involvement more frequently received corticosteroids, methotrexate and tumor necrosis factor (TNF)-α inhibitors and a higher number of treatments. Relapse of sarcoidosis occurred sooner in patients with metabolic bone involvement. CONCLUSION: These results suggest that metabolic bone involvement is associated with more diffuse and more severe sarcoidosis.

13.
Rheumatology (Oxford) ; 63(7): 1825-1836, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38230760

ABSTRACT

Cardiac involvement in idiopathic inflammatory myopathies (IIM) purports to worse clinical outcomes, and therefore early identification is important. Research has focused on blood biomarkers and basic investigations such as ECG and echocardiography, which have the advantage of wide availability and low cost but are limited in their sensitivity and specificity. Imaging the myocardium to directly look for inflammation and scarring has therefore been explored, with a number of new methods for doing this gaining wider research interest and clinical availability. Cardiovascular magnetic resonance (CMR) with contemporary multiparametric mapping techniques and late gadolinium enhancement imaging, is an extremely valuable and increasingly used non-invasive imaging modality for the diagnosis of myocarditis. The recently updated CMR-based Lake Louise Criteria for the diagnosis of myocarditis incorporate the newer T1 and T2 mapping techniques, which have greatly improved the diagnostic accuracy for IIM myocarditis.18F-FDG-PET/CT is a well-utilized imaging modality in the diagnosis of malignancies in IIM, and it also has a role for the diagnosis of myocarditis in multiple systemic inflammatory diseases. Endomyocardial biopsy, however, remains the gold standard technique for the diagnosis of myocarditis and is necessary for the diagnosis of specific cases of myocarditis. This article provides an overview of the important tests and imaging modalities that clinicians should consider when faced with an IIM patient with potential myocarditis.


Subject(s)
Myocarditis , Myositis , Humans , Myocarditis/diagnostic imaging , Myocarditis/diagnosis , Myositis/diagnosis , Myositis/diagnostic imaging , Magnetic Resonance Imaging/methods , Echocardiography/methods , Biopsy , Positron Emission Tomography Computed Tomography/methods , Biomarkers/blood , Electrocardiography
14.
Ann Surg Oncol ; 31(9): 6017-6027, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38976160

ABSTRACT

PURPOSE: This study was designed to develop and validate a machine learning-based, multimodality fusion (MMF) model using 18F-fluorodeoxyglucose (FDG) PET/CT radiomics and kernelled support tensor machine (KSTM), integrated with clinical factors and nuclear medicine experts' diagnoses to individually predict peritoneal metastasis (PM) in advanced gastric cancer (AGC). METHODS: A total of 167 patients receiving preoperative PET/CT and subsequent surgery were included between November 2006 and September 2020 and were divided into a training and testing cohort. The PM status was confirmed via laparoscopic exploration and postoperative pathology. The PET/CT signatures were constructed by classic radiomic, handcrafted-feature-based model and KSTM self-learning-based model. The clinical nomogram was constructed by independent risk factors for PM. Lastly, the PET/CT signatures, clinical nomogram, and experts' diagnoses were fused using evidential reasoning to establish the MMF model. RESULTS: The MMF model showed excellent performance in both cohorts (area under the curve [AUC] 94.16% and 90.84% in training and testing), and demonstrated better prediction accuracy than clinical nomogram or experts' diagnoses (net reclassification improvement p < 0.05). The MMF model also had satisfactory generalization ability, even in mucinous adenocarcinoma and signet ring cell carcinoma which have poor uptake of 18F-FDG (AUC 97.98% and 89.71% in training and testing). CONCLUSIONS: The 18F-FDG PET/CT radiomics-based MMF model may have significant clinical implications in predicting PM in AGC, revealing that it is necessary to combine the information from different modalities for comprehensive prediction of PM.


Subject(s)
Machine Learning , Nomograms , Peritoneal Neoplasms , Positron Emission Tomography Computed Tomography , Radiomics , Radiopharmaceuticals , Stomach Neoplasms , Adult , Aged , Female , Humans , Male , Middle Aged , Fluorodeoxyglucose F18 , Follow-Up Studies , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Prognosis , Retrospective Studies , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery , Stomach Neoplasms/diagnostic imaging , Survival Rate
15.
Article in English | MEDLINE | ID: mdl-39038172

ABSTRACT

OBJECTIVE: 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) allows noninvasive assessment of glucose metabolism and radiodensity in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). We aimed to address the effects of ageing and metabolic factors on abdominal adipose tissue. DESIGN, PATIENTS AND MEASUREMENTS: We retrospectively analyzed data from 435 healthy men (mean 42.8 years) who underwent a health check-up programme twice, at baseline and the 5-year follow-up. The mean standardized uptake value (SUV) was measured using SAT and VAT and divided by the liver SUV. The mean Hounsfield units (HU) of the SAT and VAT were measured from the CT scans. The effects of clinical variable clusters on SUVR were investigated using Bayesian hierarchical modelling; metabolic cluster (BMI, waist-to-hip ratio, fat percentage, muscle percentage*-1, HOMA-IR), blood pressure (systolic, diastolic), glucose (fasting plasma glucose level, HbA1c) and C-reactive protein. RESULTS: All the clinical variables changed during the 5-year follow-up period. The SUVR and HU of the VAT increased during follow-up; however, those of the SAT did not change. SUVR and HU were positively correlated with both VAT and SAT. SAT and VAT SUVR were negatively associated with metabolic clusters. CONCLUSIONS: Ageing led to increased glucose metabolism and radiodensity in VAT, but not in SAT. VAT may reflect the ageing process more directly than SAT. Glucose metabolism was higher and radiodensity was lower in VAT than in SAT, probably owing to differences in gene expression and lipid density. Both glucose metabolism and radiodensity of VAT and SAT reflect metabolic status.

16.
Cardiovasc Diabetol ; 23(1): 144, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671460

ABSTRACT

BACKGROUND: Evidence has shown that women with type 2 diabetes (T2DM) have a higher excess risk for cardiovascular disease (CVD) than men with T2DM. Subjects with either T2DM or prediabetes exhibit myocardial insulin resistance, but it is still unsettled whether sex-related differences in myocardial insulin resistance occur in diabetic and prediabetic subjects. METHODS: We aimed to evaluate sex-related differences in myocardial glucose metabolic rate (MRGlu), assessed using dynamic PET with 18F-FDG combined with euglycemic-hyperinsulinemic clamp, in subjects with normal glucose tolerance (NGT; n = 20), prediabetes (n = 11), and T2DM (n = 26). RESULTS: Women with prediabetes or T2DM exhibited greater relative differences in myocardial MRGlu than men with prediabetes or T2DM when compared with their NGT counterparts. As compared with women with NGT, those with prediabetes exhibited an age-adjusted 35% lower myocardial MRGlu value (P = 0.04) and women with T2DM a 74% lower value (P = 0.006), respectively. Conversely, as compared with men with NGT, men with T2DM exhibited a 40% lower myocardial MRGlu value (P = 0.004), while no significant difference was observed between men with NGT and prediabetes. The statistical test for interaction between sex and glucose tolerance on myocardial MRGlu (P < 0.0001) was significant suggesting a sex-specific association. CONCLUSIONS: Our data suggest that deterioration of glucose homeostasis in women is associated with a greater impairment in myocardial glucose metabolism as compared with men. The sex-specific myocardial insulin resistance could be an important factor responsible for the greater effect of T2DM on the excess risk of cardiovascular disease in women than in men.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glucose Clamp Technique , Insulin Resistance , Myocardium , Prediabetic State , Humans , Male , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/epidemiology , Female , Prediabetic State/metabolism , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Middle Aged , Sex Factors , Myocardium/metabolism , Blood Glucose/metabolism , Adult , Aged , Biomarkers/blood , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Radiopharmaceuticals , Insulin/blood , Case-Control Studies , Energy Metabolism
17.
Respir Res ; 25(1): 132, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500137

ABSTRACT

OBJECTIVES: Non-tuberculous mycobacteria (NTM) infection is an increasing health problem due to delaying an effective treatment. However, there are few data on 18F-FDG PET/CT for evaluating the status of NTM patients. The aim of this study was to investigate the potential value of 18F-FDG PET/CT in guiding the treatment strategy of NTM patients. METHODS: We retrospectively analyzed the cases of 23 NTM patients who underwent 18F-FDG PET/CT. The clinical data, including immune status and severity of NTM pulmonary disease (NTM-PD), were reviewed. The metabolic parameters of 18F-FDG included maximum standardized uptake value (SUVmax), SUVmax of the most FDG-avid lesion (SUVTop), SUVTop/SUVmax of the liver (SURLiver), SUVTop/SUVmax of the blood (SURBlood), metabolic lesion volume (MLV), and total lesion glycolysis (TLG). The optimal cut-off values of these parameters were determined using receiver operating characteristic curves. RESULTS: There were 6 patients (26.09%) with localized pulmonary diseases and 17 patients (73.91%) with disseminated diseases. The NTM lesions had high or moderate 18F-FDG uptake (median SUVTop: 8.2 ± 5.7). As for immune status, the median SUVTop in immunocompromised and immunocompetent patients were 5.2 ± 2.5 and 10.0 ± 6.4, respectively, with a significant difference (P = 0.038). As for extent of lesion involvement, SURLiver and SURBlood in localized pulmonary and disseminated diseases were 1.9 ± 1.1 vs. 3.8 ± 1.6, and 2.7 ± 1.8 vs. 5.5 ± 2.6, respectively, with a significant difference (P = 0.016 and 0.026). Moreover, for disease severity, SUVmax of the lung lesion (SUVI-lung) and SUVmax of the marrow (SUVMarrow) in the severe group were 7.7 ± 4.3 and 4.4 ± 2.7, respectively, significantly higher than those in the non-severe group (4.4 ± 2.0 and 2.4 ± 0.8, respectively) (P = 0.027 and 0.036). The ROC curves showed that SUVTop, SURLiver, SURBlood, SUVI-lung, and SUVMarrow had a high sensitivity and specificity for the identification of immune status, lesion extent, and severity of disease in NTM patients. CONCLUSION: 18F-FDG PET/CT is a useful tool in the diagnosis, evaluation of disease activity, immune status, and extent of lesion involvement in NTM patients, and can contribute to planning the appropriate treatment for NTM.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Positron-Emission Tomography , ROC Curve
18.
Eur J Nucl Med Mol Imaging ; 51(5): 1297-1309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38095675

ABSTRACT

PURPOSE: Evaluate the benefit of 2-deoxy-2-[18F]-fluoro-D-glucose ([18F] FDG) positron emission tomography/computed tomography (PET/CT) for the therapeutic assessment of Abatacept (ABA) as first-line therapy in early-onset polymyalgia rheumatica (PMR) patients. METHODS: This was an ancillary study of ALORS trial (Abatacept in earLy Onset polymyalgia Rheumatica Study) assessing the ability of ABA versus placebo to achieve low disease activity (C-Reactive Protein PMR activity score (CRP PMR-AS) ≤ to 10) without glucocorticoid (GC) at week 12 in patients with early-onset PMR. The patients underwent [18F] FDG PET/CT at baseline and after 12 weeks of treatment. Responses to treatments were evaluated according to CRP PMR-AS, Erythrocyte Sedimentation Rate (ESR) PMR-AS, Clin PMR-AS, and CRP-Imputed (Imput-CRP) PMR-AS. Quantitative score by maximal standardized uptake value (SUVmax) and combined qualitative scores according to liver uptake (Leuven, Leuven/Groningen, and Besançon Scores) were used for assessment of [18F] FDG uptake in regions of interest (ROI) usually affected in PMR. Student's t-test was applied to evaluate the clinical, biological, and [18F] FDG uptake variation difference in ABA and placebo groups between W0 and W12. Subgroup analysis by GC rescue was performed. RESULTS: At W12, there was no significant difference according to SUVmax between the ABA and the placebo groups in all ROI. Subgroup analysis according to GC administration demonstrated a significant (p 0.047) decrease in SUVmax within the left sternoclavicular joint ROI in the ABA group (- 0.8) compared to the placebo group (+ 0.6) without GC rescue. Other results did not reveal any significant difference between the ABA and placebo groups. According to combined qualitative scores, there was no significant difference between ABA and placebo groups for the direct comparison analysis and subgroup analysis according to GC rescue. CONCLUSION: [18F] FDG PET/CT uptake did not decrease significantly after ABA compared to placebo in anatomical areas usually affected in PMR patients. These results are correlated with the clinical-biological therapeutic assessment. CLINICAL TRIAL REGISTRATION: The study was approved by the appropriate ethics committee (CPP Sud-Est II Ref CPP: 2018-33), and all patients gave their written informed consent before study enrollment. The protocol was registered on Clinicaltrials.gov (NCT03632187).


Subject(s)
Giant Cell Arteritis , Polymyalgia Rheumatica , Sulfonamides , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Polymyalgia Rheumatica/diagnostic imaging , Polymyalgia Rheumatica/drug therapy , Abatacept/therapeutic use
19.
Eur J Nucl Med Mol Imaging ; 51(2): 405-411, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728668

ABSTRACT

BACKGROUND: The aim of this work is to provide the currently missing evidence that may allow an update of the Paediatric Dosage Card provided by the European Association of Nuclear Medicine (EANM) for conventional PET/CT systems. METHODS: In a total of 2082 consecutive [18F]FDG-PET scans performed within the EuroNet-PHL-C2 trial, the administered [18F]FDG activity was compared to the activity recommended by the EANM Paediatric Dosage Card. None of these scans had been rejected beforehand by the reference nuclear medicine panel of the trial because of poor image quality. For detailed quality assessment, a subset of 91 [18F]FDG-PET scans, all performed in different patients at staging, was selected according to pre-defined criteria, which (a) included only patients who had received substantially lower activities than those recommended by the EANM Paediatric Dosage Card, and (b) included as wide a range of different PET systems and imaging parameters as possible to ensure that the conclusions drawn in this work are as generally valid as possible. The image quality of the subset was evaluated visually by two independent readers using a quality scoring system as well as analytically based on a volume-of-interest analysis in 244 lesions and the healthy liver. Finally, recommendations for an update of the EANM Paediatric Dosage Card were derived based on the available data. RESULTS: The activity recommended by the EANM Paediatric Dosage Card was undercut by a median of 99.4 MBq in 1960 [18F]FDG-PET scans and exceeded by a median of 15.1 MBq in 119 scans. In the subset analysis (n = 91), all image data were visually classified as clinically useful. In addition, only a very weak correlation (r = 0.06) between activity reduction and tumour-to-background ratio was found. Due to the intended heterogeneity of the dataset, the noise could not be analysed statistically sound as the high range of different imaging variables resulted in very small subsets. Finally, a suggestion for an update of the EANM Paediatric Dosage Card was developed, based on the analysis presented, resulting in a mean activity reduction by 39%. CONCLUSION: The results of this work allow for a conservative update of the EANM Paediatric Dosage Card for [18F]FDG-PET/CT scans performed with conventional PET/CT systems.


Subject(s)
Neoplasms , Nuclear Medicine , Child , Humans , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Clinical Trials as Topic
20.
Eur J Nucl Med Mol Imaging ; 51(4): 1079-1084, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38030745

ABSTRACT

PURPOSE: To determine the association between workload and diagnostic errors on 18F-FDG-PET/CT. MATERIALS AND METHODS: This study included 103 18F-FDG-PET/CT scans with a diagnostic error that was corrected with an addendum between March 2018 and July 2023. All scans were performed at a tertiary care center. The workload of each nuclear medicine physician or radiologist who authorized the 18F-FDG-PET/CT report was determined on the day the diagnostic error was made and normalized for his or her own average daily production (workloadnormalized). A workloadnormalized of more than 100% indicates that the nuclear medicine physician or radiologist had a relative work overload, while a value of less than 100% indicates a relative work underload on the day the diagnostic error was made. The time of the day the diagnostic error was made was also recorded. Workloadnormalized was compared to 100% using a signed rank sum test, with the hypothesis that it would significantly exceed 100%. A Mann-Kendall test was performed to test the hypothesis that diagnostic errors would increase over the course of the day. RESULTS: Workloadnormalized (median of 121%, interquartile range: 71 to 146%) on the days the diagnostic errors were made was significantly higher than 100% (P = 0.014). There was no significant upward trend in the frequency of diagnostic errors over the course of the day (Mann-Kendall tau = 0.05, P = 0.7294). CONCLUSION: Work overload seems to be associated with diagnostic errors on 18F-FDG-PET/CT. Diagnostic errors were encountered throughout the entire working day, without any upward trend towards the end of the day.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Male , Female , Positron-Emission Tomography , Diagnostic Errors , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL