Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cancer Control ; 25(1): 1073274817752332, 2018.
Article in English | MEDLINE | ID: mdl-29334791

ABSTRACT

The excision of tumors by wide local excision is challenging because the mass must be removed entirely without ever viewing it directly. Positive margin rates in sarcoma resection remain in the range of 20% to 35% and are associated with increased recurrence and decreased survival. Fluorescence-guided surgery (FGS) may improve surgical accuracy and has been utilized in other surgical specialties. ABY-029, an anti-epidermal growth factor receptor Affibody molecule covalently bound to the near-infrared fluorophore IRDye 800CW, is an excellent candidate for future FGS applications in sarcoma resection; however, conventional methods with direct surface tumor visualization are not immediately applicable. A novel technique involving imaging through a margin of normal tissue is needed. We review the past and present applications of FGS and present a novel concept of indirect FGS for visualizing tumor through a margin of normal tissue and aiding in excising the entire lesion as a single, complete mass with tumor-free margins.


Subject(s)
Neoplasms/surgery , Surgery, Computer-Assisted/methods , Fluorescence , Humans
2.
Mol Imaging Biol ; 26(2): 272-283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151580

ABSTRACT

PURPOSE: ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for fluorescence-guided surgery of sarcomas. To date, studies using ABY-029 have occurred in tumors naïve to chemotherapy (CTx) and radiation therapy (RTx), although these neoadjuvant therapies are frequently used for sarcoma treatment in humans. The goal of this study was to evaluate the impact of CTx and RTx on tumor EGFR expression and ABY-029 fluorescence of human soft-tissue sarcoma xenografts in a murine model. PROCEDURES: Immunodeficient mice (n = 98) were divided into five sarcoma xenograft groups and three treatment groups - CTx only, RTx only, and CTx followed by RTx, plus controls. Four hours post-injection of ABY-029, animals were sacrificed followed by immediate fluorescence imaging of ex vivo adipose, muscle, nerve, and tumor tissues. Histological hematoxylin and eosin staining confirmed tumor type, and immunohistochemistry staining determined EGFR, cluster of differentiation 31 (CD31), and smooth muscle actin (SMA) expression levels. Correlation analysis (Pearson's correlation coefficients, r) and linear regression (unstandardized coefficient estimates, B) were used to determine statistical relationships in molecular expression and tissue fluorescence between xenografts and treatment groups. RESULTS: Neoadjuvant therapies had no broad impact on EGFR expression (|B|≤ 7.0, p ≥ 0.4) or on mean tissue fluorescence (any tissue type, (|B|≤ 2329.0, p ≥ 0.1). Mean tumor fluorescence was significantly related to EGFR expression (r = 0.26, p = 0.01), as expected. CONCLUSION: Results suggest that ABY-029 as an EGFR-targeted, fluorescent probe is not negatively impacted by neoadjuvant soft-tissue sarcoma therapies, although validation in humans is required.


Subject(s)
Neoadjuvant Therapy , Sarcoma , Humans , Mice , Animals , Disease Models, Animal , ErbB Receptors/metabolism , Fluorescent Dyes
3.
Mol Imaging Biol ; 25(1): 110-121, 2023 02.
Article in English | MEDLINE | ID: mdl-34651290

ABSTRACT

PURPOSE: The goal of fluorescence-guided surgery (FGS) in oncology is to improve the surgical therapeutic index by enhancing contrast between cancerous and healthy tissues. However, optimal discrimination between these tissues is complicated by the nonspecific uptake and retention of molecular targeted agents and the variance of fluorescence signal. Paired-agent imaging (PAI) employs co-administration of an untargeted imaging agent with a molecular targeted agent, providing a normalization factor to minimize nonspecific and varied signals. The resulting measured binding potential is quantitative and equivalent to in vivo immunohistochemistry of the target protein. This study demonstrates that PAI improves the accuracy of tumor-to-healthy tissue discrimination compared to single-agent imaging for in vivo FGS. PROCEDURES: PAI using a fluorescent anti-epidermal growth factor receptor (EGFR) affibody molecule (ABY-029, eIND 122,681) with untargeted IRDye 700DX carboxylate was compared to ABY-029 alone in an oral squamous cell carcinoma xenograft mouse model at 3 h after dye administration (n = 30). RESULTS: PAI significantly enhanced tumor discrimination, as compared to ABY-029 alone in low EGFR-expressing tumors and highly heterogeneous populations including multiple cell lines with varying expression (diagnostic accuracy: 0.908 vs. 0.854 and 0.908 vs. 0.822; and ROC curve AUC: 0.963 vs. 0.909 and 0.957 vs. 0.909, respectively) indicating a potential for universal FGS image thresholds to determine surgical margins. In addition, PAI achieved significantly higher diagnostic ability than ABY-029 alone 0.25-5-h post injection and exhibited a stronger correlation to EGFR expression heterogeneity. CONCLUSION: The quantitative receptor delineation of PAI promises to improve the surgical therapeutic index of cancer resection in a clinically relevant timeline.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Surgery, Computer-Assisted , Humans , Mice , Animals , Mouth Neoplasms/diagnostic imaging , Mouth Neoplasms/surgery , ErbB Receptors/metabolism , Surgery, Computer-Assisted/methods , Optical Imaging/methods , Cell Line, Tumor
4.
Front Med Technol ; 5: 1009638, 2023.
Article in English | MEDLINE | ID: mdl-36875185

ABSTRACT

Background: Fluorescence molecular imaging using ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for surgical guidance during head and neck squamous cell carcinoma (HNSCC) resection. However, tumor-to-normal tissue contrast is confounded by intrinsic physiological limitations of heterogeneous EGFR expression and non-specific agent uptake. Objective: In this preliminary study, radiomic analysis was applied to optical ABY-029 fluorescence image data for HNSCC tissue classification through an approach termed "optomics." Optomics was employed to improve tumor identification by leveraging textural pattern differences in EGFR expression conveyed by fluorescence. The study objective was to compare the performance of conventional fluorescence intensity thresholding and optomics for binary classification of malignant vs. non-malignant HNSCC tissues. Materials and Methods: Fluorescence image data collected through a Phase 0 clinical trial of ABY-029 involved a total of 20,073 sub-image patches (size of 1.8 × 1.8 mm2) extracted from 24 bread-loafed slices of HNSCC surgical resections originating from 12 patients who were stratified into three dose groups (30, 90, and 171 nanomoles). Each dose group was randomly partitioned on the specimen-level 75%/25% into training/testing sets, then all training and testing sets were aggregated. A total of 1,472 standardized radiomic features were extracted from each patch and evaluated by minimum redundancy maximum relevance feature selection, and 25 top-ranked features were used to train a support vector machine (SVM) classifier. Predictive performance of the SVM classifier was compared to fluorescence intensity thresholding for classifying testing set image patches with histologically confirmed malignancy status. Results: Optomics provided consistent improvement in prediction accuracy and false positive rate (FPR) and similar false negative rate (FNR) on all testing set slices, irrespective of dose, compared to fluorescence intensity thresholding (mean accuracies of 89% vs. 81%, P = 0.0072; mean FPRs of 12% vs. 21%, P = 0.0035; and mean FNRs of 13% vs. 17%, P = 0.35). Conclusions: Optomics outperformed conventional fluorescence intensity thresholding for tumor identification using sub-image patches as the unit of analysis. Optomics mitigate diagnostic uncertainties introduced through physiological variability, imaging agent dose, and inter-specimen biases of fluorescence molecular imaging by probing textural image information. This preliminary study provides a proof-of-concept that applying radiomics to fluorescence molecular imaging data offers a promising image analysis technique for cancer detection in fluorescence-guided surgery.

5.
Mol Imaging Biol ; 25(1): 97-109, 2023 02.
Article in English | MEDLINE | ID: mdl-34642897

ABSTRACT

PURPOSE: Non-specific uptake and retention of molecular targeted agents and heterogeneous tissue optical properties diminish the ability to differentiate between tumor and normal tissues using molecular targeted fluorescent agents. Paired-agent imaging (PAI) can increase the diagnostic ability to detect tumor tissue by mitigating these non-specific effects and providing true molecular contrast by co-administration of an untargeted control imaging agent with a targeted agent. This study evaluates the suitability of available clinically translatable untargeted agents for the translation of PAI in fluorescence-guided surgery using an affibody-based targeted imaging agent (ABY-029). EXPERIMENTAL: DESIGN: Three untargeted agents that fluoresce near 700 nm and exhibit good clinical safety profiles (methylene blue, IRDye 700DX, and IRDye 680LT) were tested in combination with the clinically tested IRDye 800CW-labeled anti-epidermal growth factor receptor (EGFR) affibody molecule, ABY-029 (eIND 122,681). Properties of the untargeted agent important for human use and integrity of PAI were tested: (1) plasma protein binding; (2) fluorescence signal linearity in in vitro whole blood dilution; (3) in vivo pharmacokinetic matching to targeted agent in negative control tissue; and (4) in vivo diagnostic accuracy of PAI vs single agent imaging (SAI) of ABY-029 alone in orthotopic oral head and neck squamous cell carcinomas. RESULTS: IRDye 680LT outperformed IRDye 700DX and methylene blue with the highest signal linearity (R2 = 0.9998 ± 0.0002, 0.9995 ± 0.0004, 0.91 ± 0.02, respectively), the highest fluorescence yield in whole blood at 1 µM (104.42 ± 0.05, 103.68 ± 0.09, 101.9 ± 0.2, respectively), and the most closely matched ABY-029 pharmacokinetics in EGFR-negative tissues (binding potential error percentage = 0.31% ± 0.37%, 10.25% ± 1.30%, and 8.10% ± 5.37%, respectively). The diagnostic ability of PAI with ABY-029 and IRDye 680LT outperformed conventional SAI with an area-under-the-receiver-operating-characteristic curve (AUC) value of 0.964 vs. 0.854, and 0.978 vs. 0.925 in the Odyssey scanning system and Pearl wide field imaging system, respectively. CONCLUSION: PAI is a highly promising methodology for increasing detection of tumors in fluorescence-guided surgery. Although not yet clinically approved, IRDye 680LT demonstrates promise as an untargeted agent when paired with ABY-029. The clinical translation of PAI to maximize tumor excision, while minimizing normal tissue removal, could improve both patient survival and life quality.


Subject(s)
ErbB Receptors , Neoplasms , Humans , ErbB Receptors/metabolism , Fluorescence , Methylene Blue
6.
Article in English | MEDLINE | ID: mdl-34121794

ABSTRACT

Long-term survival of head and neck squamous cell carcinoma (HNSCC) patients have proven to be correlated with negative surgical margins. Paired-Agent Imaging for Resection during Surgery (PAIRS) is capable of drawing the fine line between tumor and normal tissue by employing a control imaging-agent, which is co-administered with the targeted imaging agent to account for nonspecific signal. PAI is highly dependent on the parallel paired-agent delivery and static quantum yield of the agent to trace the molecular concentration. However, it is well known that nonspecific binding of fluorescence probes to plasma proteins can change its delivery, dissociation constant, and quantum yield. A thorough evaluation of the effect of plasma protein binding in the estimation of receptor concentration was performed for the paired-agents in this study. We are planning to evaluate ABY-029, an anti-epithelial growth factor receptor (EGFR) Affibody, and IRDye 700DX as a control agent. The plasma-dependent change in fluorescence intensity, percent binding, and in vivo distribution kinetics will be studied for each agent alone, and in combination. In this proceeding, the absorption, emission patterns for the targeted agent, ABY-029, measured by UV-Vis, fluorometer, and Pearl were shown. Initial studies indicate that binding to Bovine serum albumin (BSA), human serum albumin (HSA) and EGFR can introduce the Solvatochromic shift, which will change the absorption and emission pattern for ABY-029. Computational modeling will be performed to determine how each of these changes will affect the determined BP, and thus detection of tumors from normal tissue.

7.
Article in English | MEDLINE | ID: mdl-36051445

ABSTRACT

ABY-029, an anti-epidermal growth factor receptor (EGFR) Affibody molecule labeled with IRDye 800CW, has been used in three Phase 0 microdosing clinical trials for fluorescence guided surgery. In May of 2019, the clinical trials were put on hold because the ABY-029 produced under Good Manufacturing Practices (GMP) for human administration had come to the end of term in which the drug product was known to be stable. Stability testing was halted due to limitations in supply of a suitable reference standard and a required test product being discontinued from commercial sale. In order to complete the remaining patients in the three clinical trials, new stability tests were developed and the GMP batch of ABY-029 drug product tested under the new protocols. The GMP batch of ABY-029 passed all stability tests under the new protocols and the Federal Drug Administration (FDA) has given permission to complete the remaining patients with stability testing of ABY-029 performed for each patient. The tests developed and used to test ABY-029 drug product stability are described here.

8.
Article in English | MEDLINE | ID: mdl-31595101

ABSTRACT

Microdose administration of ABY-029, an anti-epidermal growth factor receptor Affibody molecule conjugated to IRDye 800CW, is being studied in a Phase 0 trial for resection of soft-tissue sarcomas. The excised tissue of a single patient in the microdose administration group was imaged with both a wide-field fluorescence surgical system and a flat-bed scanning fluorescence imaging system. Here the resultant fluorescence from a breadloaf section of the primary tumor specimen and six region-specific tissue samples collected from that breadloaf are compared using these two imaging systems - a flatbed, black-box, fluorescence scanning system, the Odyssey CLx, and a open-air, wide-field, pre-clinical surgical imaging system, the Solaris. Florescence signal is compared using a variety of methods including: mean, standard deviation, variance, tumor-to-background ratio, biological-variance ratio, and contrast-to-noise ratio. The images produced from the Odyssey scanner have higher signal variance but more accurately represent the EGFR expression in small tissue sections. The Solaris system has higher depth sensitivity and volume averaging, and as such has lower signal variation and higher contrast-to-noise ratio.

9.
Article in English | MEDLINE | ID: mdl-31686720

ABSTRACT

Head and neck cancers overwhelmingly overexpress epidermal growth factor receptor (EGFR). This overexpression has been utilized for head and neck cancers using molecular targeted agents for therapy and cancer cell detection. Significant progress has been made in using EGFR-targeted fluorescent antibody and Affibody molecule agents for fluorescent guided surgery in head and neck cancers. Although success in achieving tumor-to-background ratio of 3-5 have been achieved, the field is limited by the non-specific fluorescence in normal tissues as well as EGFR specific fluorescence in the oral cavity. We propose that paired-agent imaging (PAI) could improve the contrast between tumor and normal tissue by removing the fluorescent signal arising from non-specific binding. Here, ABY-029 - an anti-EGFR Affibody molecule labeled with IRDye 800CW - and IRDye 680RD conjugated to Affibody Control Imaging Agent molecule (IR680-Affctrl) are used as targeted and untargeted control agents, respectively, in a panel of head and neck squamous cell carcinomas (HNSCC) to test the ability of PAI to increase tumor detection. Initial results demonstrate that binding potential, a value proportional to receptor concentration, correlates well to EGFR expression but experimental limitations prevented pixel-by-pixel analysis that was desired. Although promising, a more rigorous and well-defined experimental protocol is required to align ex vivo EGFR immunohistochemistry with in vivo binding potential and fluorescence intensity. Additionally, a new set of paired-agents, ABY-029 and IRDye 700DX, are successfully tested in naïve mice and will be carried forward for clinical translation.

10.
Mol Imaging Biol ; 19(1): 41-48, 2017 02.
Article in English | MEDLINE | ID: mdl-27379987

ABSTRACT

PURPOSE: Fluorescence guidance in surgical oncology provides the potential to realize enhanced molecular tumor contrast with dedicated targeted tracers, potentially with a microdose injection level. For most glioma tumors, the blood brain barrier is compromised allowing some exogenous drug/molecule delivery and accumulation for imaging. The aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers, including glioblastoma, and so the use of a near-infrared (NIR) fluorescent molecule targeted to the EGFR receptor provides the potential for improving tumor contrast during surgery. Fluorescently labeled affibody molecule (ABY-029) has high EGFR affinity and high potential specificity with reasonably fast plasma clearance. In this study, ABY-29 was evaluated in glioma versus normal brain uptake from intravenous injection at a range of doses, down to a microdose injection level. PROCEDURE: Nude rats were inoculated with the U251 human glioma cell line in the brain. Tumors were allowed to grow for 3-4 weeks. ABY-029 fluorescence ex vivo imaging of brain slices was acquired at different time points (1-48 h) and varying injection doses from 25 to 122 µg/kg (from human protein microdose equivalent to five times microdose levels). RESULTS: The tumor was most clearly visualized at 1-h post-injection with 8- to 16-fold average contrast relative to normal brain. However, the tumor still could be identified after 48 h. In all cases, the ABY-029 fluorescence appeared to localize preferentially in EGFR-positive regions. Increasing the injected dose from a microdose level to five times, a microdose level increased the signal by 10-fold, and the contrast was from 8 to 16, showing that there was value in doses slightly higher than the microdose restriction. Normal tissue uptake was found to be affected by the tumor size, indicating that edema was a likely factor affecting the expected tumor to normal tissue contrast. CONCLUSION: These results suggest that the NIR-labeled affibody molecules provide an excellent potential to increase surgical visualization of EGFR-positive tumor regions.


Subject(s)
ErbB Receptors/metabolism , Glioma/metabolism , Recombinant Fusion Proteins/administration & dosage , Staining and Labeling , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Female , Fluorescence , Glioma/pathology , Humans , Image Processing, Computer-Assisted , Rats, Nude , Signal Processing, Computer-Assisted
11.
J Biomed Opt ; 22(12): 1-12, 2017 12.
Article in English | MEDLINE | ID: mdl-29274143

ABSTRACT

Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ∼1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ∼1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE.


Subject(s)
Optical Imaging/instrumentation , Phantoms, Imaging , Sarcoma/diagnostic imaging , Sarcoma/surgery , Spectroscopy, Near-Infrared/instrumentation , Surgery, Computer-Assisted/instrumentation , Humans , Models, Biological , Spectroscopy, Near-Infrared/methods
12.
Mol Imaging Biol ; 19(4): 512-521, 2017 08.
Article in English | MEDLINE | ID: mdl-27909986

ABSTRACT

PURPOSE: ABY-029, a synthetic Affibody peptide, Z03115-Cys, labeled with a near-infrared fluorophore, IRDye® 800CW, targeting epidermal growth factor receptor (EGFR) has been produced under good manufacturing practices for a US Food and Drug Administration-approved first-in-use human study during surgical resection of glioma, as well as other tumors. Here, the pharmacology, phototoxicity, receptor activity, and biodistribution studies of ABY-029 were completed in rats, prior to the intended human use. PROCEDURES: Male and female Sprague Dawley rats were administered a single intravenous dose of varying concentrations (0, 245, 2449, and 24,490 µg/kg corresponding to 10×, 100×, and 1000× an equivalent human microdose level) of ABY-029 and observed for up to 14 days. Histopathological assessment of organs and tissues, clinical chemistry, and hematology were performed. In addition, pharmacokinetic clearance and biodistribution of ABY-029 were studied in subgroups of the animals. Phototoxicity and ABY-029 binding to human and rat EGFR were assessed in cell culture and on immobilized receptors, respectively. RESULTS: Histopathological assessment and hematological and clinical chemistry analysis demonstrated that single-dose ABY-029 produced no pathological evidence of toxicity at any dose level. No phototoxicity was observed in EGFR-positive and EGFR-negative glioma cell lines. Binding strength and pharmacokinetics of the anti-EGFR Affibody molecules were retained after labeling with the dye. CONCLUSION: Based on the successful safety profile of ABY-029, the 1000× human microdose 24.5 mg/kg was identified as the no observed adverse effect level following intravenous administration. Conserved binding strength and no observed light toxicity also demonstrated ABY-029 safety for human use.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Peptide Fragments/pharmacology , Peptide Fragments/toxicity , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/toxicity , Staphylococcal Protein A/pharmacology , Staphylococcal Protein A/toxicity , Animals , Body Weight/drug effects , ErbB Receptors/metabolism , Female , Fluorescence , Humans , Injections , Light , Male , Organ Size/drug effects , Peptide Fragments/administration & dosage , Rats, Sprague-Dawley , Recombinant Fusion Proteins/administration & dosage , Staphylococcal Protein A/administration & dosage , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL