Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
1.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38593805

ABSTRACT

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Subject(s)
DNA Damage , DNA Replication , RecQ Helicases , Telomere Homeostasis , Telomere , RecQ Helicases/metabolism , RecQ Helicases/genetics , Humans , Telomere/metabolism , Telomere/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , Bloom Syndrome/enzymology , Bloom Syndrome/pathology , Cell Line, Tumor
2.
Annu Rev Biochem ; 83: 671-96, 2014.
Article in English | MEDLINE | ID: mdl-24606138

ABSTRACT

A large family of chromatin remodelers that noncovalently modify chromatin is crucial in cell development and differentiation. They are often the targets of cancer, neurological disorders, and other human diseases. These complexes alter nucleosome positioning, higher-order chromatin structure, and nuclear organization. They also assemble chromatin, exchange out histone variants, and disassemble chromatin at defined locations. We review aspects of the structural organization of these complexes, the functional properties of their protein domains, and variation between complexes. We also address the mechanistic details of these complexes in mobilizing nucleosomes and altering chromatin structure. A better understanding of these issues will be vital for further analyses of subunits of these chromatin remodelers, which are being identified as targets in human diseases by NGS (next-generation sequencing).


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/chemistry , DNA/chemistry , Nucleosomes/chemistry , Adenosine Triphosphate/chemistry , Animals , Cell Differentiation , Crystallography, X-Ray/methods , Humans , Nucleosomes/metabolism , Protein Interaction Mapping , Protein Structure, Tertiary , Transcription Factors/metabolism
3.
Trends Genet ; 39(6): 505-519, 2023 06.
Article in English | MEDLINE | ID: mdl-36894374

ABSTRACT

ATRX (alpha-thalassemia mental retardation X-linked) is one of the most frequently mutated tumor suppressor genes in human cancers, especially in glioma, and recent findings indicate roles for ATRX in key molecular pathways, such as the regulation of chromatin state, gene expression, and DNA damage repair, placing ATRX as a central player in the maintenance of genome stability and function. This has led to new perspectives about the functional role of ATRX and its relationship with cancer. Here, we provide an overview of ATRX interactions and molecular functions and discuss the consequences of its impairment, including alternative lengthening of telomeres and therapeutic vulnerabilities that may be exploited in cancer cells.


Subject(s)
Chromatin , Glioma , Humans , Chromatin/genetics , DNA Helicases/genetics , X-linked Nuclear Protein/genetics , Telomere Homeostasis/genetics , Glioma/genetics , Telomere
4.
Mol Cell ; 71(1): 11-24.e7, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29937341

ABSTRACT

ATRX is a chromatin remodeler that, together with its chaperone DAXX, deposits the histone variant H3.3 in pericentromeric and telomeric regions. Notably, ATRX is frequently mutated in tumors that maintain telomere length by a specific form of homologous recombination (HR). Surprisingly, in this context, we demonstrate that ATRX-deficient cells exhibit a defect in repairing exogenously induced DNA double-strand breaks (DSBs) by HR. ATRX operates downstream of the Rad51 removal step and interacts with PCNA and RFC-1, which are collectively required for DNA repair synthesis during HR. ATRX depletion abolishes DNA repair synthesis and prevents the formation of sister chromatid exchanges at exogenously induced DSBs. DAXX- and H3.3-depleted cells exhibit identical HR defects as ATRX-depleted cells, and both ATRX and DAXX function to deposit H3.3 during DNA repair synthesis. This suggests that ATRX facilitates the chromatin reconstitution required for extended DNA repair synthesis and sister chromatid exchange during HR.


Subject(s)
DNA Breaks, Double-Stranded , Recombinational DNA Repair , Sister Chromatid Exchange , X-linked Nuclear Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Co-Repressor Proteins , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Molecular Chaperones , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Replication Protein C/genetics , Replication Protein C/metabolism , X-linked Nuclear Protein/genetics
5.
J Neurooncol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251545

ABSTRACT

PURPOSE: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose. Drug candidate CBL0137 is efficacious against glioblastoma by inhibiting histone chaperone FACT, known to be involved in DNA damage repair. We investigated the combination of CBL0137 and radiation on glioblastoma. METHODS: In vitro, we combined CBL0137 with radiation on U87MG and A1207 glioblastoma cells using the clonogenic assay to evaluate the response to several treatment regimens, and the Fast Halo Assay to examine DNA repair. In vivo, we used the optimum combination treatment regimen to evaluate the response of orthotopic tumors in nude mice. RESULTS: In vitro, the combination of CBL0137 and radiation is superior to either alone and administering CBL0137 two hours prior to radiation, having the drug present during and for a prolonged period post-radiation, is an optimal schedule. CBL0137 inhibits DNA damage repair following radiation and affects the subcellular distribution of histone chaperone ATRX, a molecule involved in DNA repair. In vivo, one dose of CBL0137 is efficacious and the combination of CBL0137 with radiation increases median survival over either monotherapy. CONCLUSIONS: CBL0137 is most effective with radiation for glioblastoma when present at the time of radiation, immediately after and for a prolonged period post-radiation, by inhibiting DNA repair caused by radiation. The combination leads to increased survival making it attractive as a dual therapy.

6.
Neuroradiology ; 66(4): 521-530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347151

ABSTRACT

PURPOSE: T2-FLAIR mismatch serves as a highly specific but insensitive marker for IDH-mutant (IDHm) astrocytoma with potential limitations in real-world application. We aimed to assess the utility of a broader definition of T2-FLAIR discordance across a cohort of adult-type diffuse lower-grade gliomas (LrGG) to see if specific patterns emerge and additionally examine factors determining deviation from the classic T2-FLAIR mismatch sign. METHODS: Preoperative MRIs of non-enhancing adult-type diffuse LrGGs were reviewed. Relevant demographic, molecular, and MRI data were compared across tumor subgroups. RESULTS: Eighty cases satisfied the inclusion criteria. Highest discordance prevalence and > 50% T2-FLAIR discordance volume were noted with IDHm astrocytomas (P < 0.001), while < 25% discordance volume was associated with oligodendrogliomas (P = 0.03) and IDH-wildtype (IDHw) LrGG (P = 0.004). "T2-FLAIR matched pattern" was associated with IDHw LrGG (P < 0.001) and small or minimal areas of discordance with oligodendrogliomas (P = 0.03). Sensitivity and specificity of classic mismatch sign for IDHm astrocytoma were 25.7% and 100%, respectively (P = 0.06). Retained ATRX expression and/or non-canonical IDH mutation (n = 10) emerged as a significant factor associated with absence of classic T2-FLAIR mismatch sign in IDHm astrocytomas (100%, P = 0.02) and instead had minimal discordance or matched pattern (40%, P = 0.04). CONCLUSION: T2-FLAIR discordance patterns in adult-type diffuse LrGGs exist on a diverging but distinct spectrum of classic mismatch to T2-FLAIR matched patterns. Specific molecular markers may play a role in deviations from classic mismatch sign.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Oligodendroglioma , Adult , Humans , Brain Neoplasms/pathology , Retrospective Studies , Isocitrate Dehydrogenase/genetics , Glioma/pathology , Magnetic Resonance Imaging , Astrocytoma/genetics , Mutation
7.
J Endocrinol Invest ; 47(5): 1191-1203, 2024 May.
Article in English | MEDLINE | ID: mdl-38206552

ABSTRACT

OBJECTIVE: The existing prediction models for metastasis in pheochromocytomas/paragangliomas (PPGLs) showed high heterogeneity in different centers. Therefore, this study aimed to establish new prediction models integrating multiple variables based on different algorithms. DESIGN AND METHODS: Data of patients with PPGLs undergoing surgical resection at the Peking Union Medical College Hospital from 2007 to 2022 were collected retrospectively. Patients were randomly divided into the training and testing sets in a ratio of 7:3. Subsequently, decision trees, random forest, and logistic models were constructed for metastasis prediction with the training set and Cox models for metastasis-free survival (MFS) prediction with the total population. Additionally, Ki-67 index and tumor size were transformed into categorical variables for adjusting models. The testing set was used to assess the discrimination and calibration of models and the optimal models were visualized as nomograms. Clinical characteristics and MFS were compared between patients with and without risk factors. RESULTS: A total of 198 patients with 59 cases of metastasis were included and classified into the training set (n = 138) and testing set (n = 60). Among all models, the logistic regression model showed the best discrimination for metastasis prediction with an AUC of 0.891 (95% CI, 0.793-0.990), integrating SDHB germline mutations [OR: 96.72 (95% CI, 16.61-940.79)], S-100 (-) [OR: 11.22 (95% CI, 3.04-58.51)], ATRX (-) [OR: 8.42 (95% CI, 2.73-29.24)] and Ki-67 ≥ 3% [OR: 7.98 (95% CI, 2.27-32.24)] evaluated through immunohistochemistry (IHC), and tumor size ≥ 5 cm [OR: 4.59 (95% CI, 1.34-19.13)]. The multivariate Cox model including the above risk factors also showed a high C-index of 0.860 (95% CI, 0.810-0.911) in predicting MFS after surgery. Furthermore, patients with the above risk factors showed a significantly poorer MFS (P ≤ 0.001). CONCLUSIONS: Models established in this study provided alternative and reliable tools for clinicians to predict PPGLs patients' metastasis and MFS. More importantly, this study revealed for the first time that IHC of ATRX could act as an independent predictor of metastasis in PPGLs.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/pathology , Female , Male , Paraganglioma/pathology , Paraganglioma/surgery , Adrenal Gland Neoplasms/pathology , Adrenal Gland Neoplasms/secondary , Middle Aged , Retrospective Studies , Adult , Prognosis , Nomograms , Neoplasm Metastasis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Follow-Up Studies , Risk Factors
8.
EMBO J ; 38(19): e96659, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31454099

ABSTRACT

Loss of the histone H3.3-specific chaperone component ATRX or its partner DAXX frequently occurs in human cancers that employ alternative lengthening of telomeres (ALT) for chromosomal end protection, yet the underlying mechanism remains unclear. Here, we report that ATRX/DAXX does not serve as an immediate repressive switch for ALT. Instead, ATRX or DAXX depletion gradually induces telomere DNA replication dysfunction that activates not only homology-directed DNA repair responses but also cell cycle checkpoint control. Mechanistically, we demonstrate that this process is contingent on ATRX/DAXX histone chaperone function, independently of telomere length. Combined ATAC-seq and telomere chromatin immunoprecipitation studies reveal that ATRX loss provokes progressive telomere decondensation that culminates in the inception of persistent telomere replication dysfunction. We further show that endogenous telomerase activity cannot overcome telomere dysfunction induced by ATRX loss, leaving telomere repair-based ALT as the only viable mechanism for telomere maintenance during immortalization. Together, these findings implicate ALT activation as an adaptive response to ATRX/DAXX loss-induced telomere replication dysfunction.


Subject(s)
Co-Repressor Proteins/genetics , Molecular Chaperones/genetics , Telomere Homeostasis , Telomere/metabolism , X-linked Nuclear Protein/genetics , Cell Line , DNA Repair , Gene Deletion , HEK293 Cells , Humans , Telomerase/metabolism
9.
Acta Neuropathol ; 145(5): 667-680, 2023 05.
Article in English | MEDLINE | ID: mdl-36933012

ABSTRACT

Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Neoplasms, Neuroepithelial , Humans , Young Adult , Biomarkers, Tumor/genetics , Brain/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Gene Fusion , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Receptor Protein-Tyrosine Kinases/genetics , X-linked Nuclear Protein/genetics
10.
Eur J Nucl Med Mol Imaging ; 50(9): 2818-2829, 2023 07.
Article in English | MEDLINE | ID: mdl-37010579

ABSTRACT

PURPOSE: To evaluate the role of 68Ga-DOTATOC PET parameters in predicting DAXX/ATRX loss of expression in patients with Pancreatic neuroendocrine tumors (PanNET) candidate to surgery. METHODS: This retrospective study included 72 consecutive patients with PanNET (January 2018-March 2022) who underwent to 68Ga-DOTATOC PET for preoperative staging. Image analysis: qualitative assessment and extraction of SUVmax, SUV mean, somatostatin receptor density (SRD), and total lesion somatostatin receptor density (TLSRD) from primary PanNET. Radiological diameter and biopsy information (grade, Ki67) were collected. Loss of expression (LoE) of DAXX/ATRX was assessed by immunohistochemistry on surgical specimen. Student t-test, univariate and multivariate logistic regression and ROC curves have been used to investigate the predictive value of PET parameters on DAXX/ATRX LoE. RESULTS: Forty-two/72 patients had a G1, 28/72 a G2, and 2/72 a G3 PanNET. Seven/72 patients had DAXX LoE, 10/72 ATRX LoE, and 2/72 DAXX/ATRX LoE. SRD and TLSRD could predict DAXX LoE (p = 0.002, p = 0.018, respectively). By evaluating SRD in combination with radiological diameter, only SRD maintained statistical significance (multivariate logistic regression: p = 0.020, OR = 1.05), providing the best prediction (AUC-ROC = 79.01%; cut-off = 46.96; sensitivity = 77.78%; specificity = 88.89%). In the sub-analysis performed on 55 patients with biopsy availability, SRD demonstrated its role in providing useful and additional information (multivariate logistic regression: SRD p = 0.007; grade p = 0.040). CONCLUSION: SRD has a predictive role on DAXX LoE in PanNETs, with higher probability of LoE at increasing SRD values. SRD provides complementary/additional information to grade assessed on biopsy material, and the combined use of these approaches might support patients' management by preoperatively identifying subjects with more aggressive diseases.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Neuroendocrine Tumors/metabolism , X-linked Nuclear Protein/metabolism , Receptors, Somatostatin/metabolism , Gallium Radioisotopes , Retrospective Studies , Adaptor Proteins, Signal Transducing/analysis , Adaptor Proteins, Signal Transducing/metabolism , Pancreatic Neoplasms/metabolism , Positron-Emission Tomography , Molecular Chaperones/metabolism , Co-Repressor Proteins/metabolism
11.
Gynecol Oncol ; 169: 98-105, 2023 02.
Article in English | MEDLINE | ID: mdl-36525930

ABSTRACT

BACKGROUND: Carcinosarcoma of the ovary (OCS) and uterus (UCS) are rare highly aggressive malignancies. Ataxia-telangiectasia-and-Rad3-related (ATR) kinase and homologous recombination play a pivotal role in DNA damage repair. Homologous recombination deficiency (HRD) has been demonstrated in >30% of OCS/UCS. We investigated the preclinical activity of elimusertib, a selective ATR kinase inhibitor, against carcinosarcoma (CS) cell lines and xenografts. METHODS: Sensitivity to elimusertib was evaluated in vitro against nine whole exome-sequenced (WES) primary CS cell lines and in vivo against HRD CS xenografts. Western blots were performed to determine baseline ATR and p-ATR protein expression in CS, and ATR pathway downstream effectors and apoptosis markers in CS HRD cell lines after Elimusertib treatment. RESULTS: Out of the 9 CS cell lines, 3 harbored HRD and 6 homologous recombination proficient (HRP) features. Most of CS (i.e., 7/9 = 85%) were found to be sensitive to Elimusertib in vitro. Among the 5 primary CS cell lines with a high-grade pure serous epithelial component, HRD cell lines were more sensitive to elimusertib than HRP tumors (mean IC50 ± SEM HRD CS = 61.3 nM ±15.2 vs HRP = 361.6 nM ±24.4 (p = 0.01)). Baseline ATR and p-ATR protein expression was higher in HRD CS cell lines. Elimusertib showed tumor growth inhibition in HRD CS xenografts (p < 0.0001) and increased overall animal survival (p < 0.0001). Western blot demonstrated dose-dependent inhibition of ATR, p-ATR and its downstream effector p-CHK1, and a dose-dependent increase in caspase-3 expression. CONCLUSIONS: Elimusertib is preclinically active in vitro and in vivo against primary CS cell lines and xenografts, respectively. CS models harboring HRD or with pure/mixed endometrioid histology demonstrated higher sensitivity to ATR inhibition. Clinical trials with elimusertib in CS patients are warranted.


Subject(s)
Antineoplastic Agents , Ataxia Telangiectasia , Carcinosarcoma , Uterine Neoplasms , Female , Animals , Humans , Ataxia Telangiectasia/drug therapy , Ovary , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line, Tumor , Antineoplastic Agents/therapeutic use , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics , Carcinosarcoma/drug therapy , Carcinosarcoma/genetics
12.
Gynecol Oncol ; 168: 157-165, 2023 01.
Article in English | MEDLINE | ID: mdl-36442427

ABSTRACT

INTRODUCTION: Uterine leiomyosarcoma (uLMS) is a rare, highly aggressive malignancy. Recent data suggest 50% of uLMS may harbor alterations in the ATRX gene and such mutations may confer sensitivity to ataxia-telangiectasia-and-Rad3-related (ATR) kinase inhibitors. We sought to investigate the in vivo activity of Elimusertib (BAY1895344), a novel ATR-inhibitor, against ATRX-mutated uLMS patient-derived xenografts (PDXs). METHODS: Two fully characterized uLMS (i.e., LEY-11 and LEY-16) were grafted into female CB-17/SCID mice. Treatments with control vehicle or BAY1895344 (20 mg/kg dosed twice daily 3 days on 4 days off) were given via oral gavage and tumor measurements as well as weights obtained twice weekly. Tumor volume differences were calculated with a two-way ANOVA. Mechanistic studies were performed ex vivo using BAY1895344 treated uLMS tumor samples by western blot analysis. RESULTS: Both PDX LEY-11 and PDX LEY-16 harboring ATRX gene mutations demonstrated an aggressive behavior in vivo (i.e., control mice were euthanized on average at day 12.5 for PDX LEY-11 and at day 33 for PDX LEY-16). In both tumor models BAY1895344 20 mg/kg dosed with an intermittent oral schedule was able to induce significant growth inhibition compared to vehicle control treatment (p < 0.001 for both LEY-11 and LEY-16) and prolong median overall survival [PDX LEY-11 (12.5 vs. 42 days, p < 0.001) and PDX LEY-16 (33 vs. 60 days, p < 0.001)]. There were not significant changes in weight between treatment and controls. By western blot assays BAY1895344 exposure decreased phosphorylated-ATR and increased expression of apoptotic molecules in LMS PDXs. CONCLUSIONS: BAY1895344 demonstrates promising in vivo activity against biologically aggressive PDX models of uLMS harboring ATRX mutations, with no significant toxicity. Clinical trials of BAY1895344 in uLMS patients are warranted.


Subject(s)
Leiomyosarcoma , Uterine Neoplasms , Humans , Female , Animals , Mice , Leiomyosarcoma/drug therapy , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Mice, SCID , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Mutation , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics
13.
Pathobiology ; 90(2): 71-80, 2023.
Article in English | MEDLINE | ID: mdl-35691289

ABSTRACT

INTRODUCTION: Studies on pancreatic neuroendocrine tumors (PanNETs) regarding loss of ATRX, DAXX, or frequency of microsatellite instability (MSI) show inconclusive results. So far, data on corresponding metastaseshave not been published. METHODS: We performed immunohistochemistry (IHC) of ATRX, DAXX, MSH2, MSH6, MLH1, and PMS2 on 74 PanNETs and 19 metastases. ATRX- and DAXX-negative PanNETs were further sequenced for mutations. We used polymerase chain reaction for MSI on cases with IHC loss of MSH2, MSH6, MLH1, and PMS2. RESULTS: Immunohistochemical loss of DAXX and ATRX was observed in 8/74 (11%) and 6/74 (8%) PanNETs. Loss of DAXX immunoreactivity was statistically associated with higher tumor grade and showed a tendency toward a decreased overall survival. Sequencing of DAXX- (7/11 [64%]) and ATRX-negative (5/11 [45%]) PanNETs revealed a mutation in 6/7 (86%) and 2/5 (40%). The specificity of immunohistochemical loss of DAXX and ATRX for mutation was 80% and 67%, respectively. The expression status of DAXX compared to primary tumor differs in 2/12 (17%) lymph node metastases. We further identified 3/74 (4%) tumors as MSI, associated with a poor prognosis. DISCUSSION/CONCLUSION: Our study supports the hypothesis that a loss of DAXX immunoreactivity can identify a more aggressive subtype of PanNET with high confidence, while ATRX loss is a weaker indicator. Our results also strengthen the role of DAXX immunolabeling as a prognostic marker. We could show that ATRX might be less suitable as a surrogate for sequencing. Our results indicate that IHC of DAXX and ATRX may identify PanNET subtypes as targets for more aggressive therapy.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Microsatellite Instability , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Pancreatic Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/analysis , Adaptor Proteins, Signal Transducing/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism
14.
J Pathol ; 256(2): 143-148, 2022 02.
Article in English | MEDLINE | ID: mdl-34750813

ABSTRACT

Primary non-functional pancreatic neuroendocrine tumors (NF-PanNETs) are a heterogeneous group of neuroendocrine neoplasms that display highly variable clinical behavior. Therefore, NF-PanNETs often present clinical teams with a dilemma: the uncertain metastatic potential of the tumor has to be weighed against the morbidity associated with surgical resection. Thus, rather than utilizing current radiologic thresholds, there is an urgent need for improved prognostic biomarkers. Recent studies aimed at understanding the epigenetic underpinnings of NF-PanNETs have led to the identification of tumor subgroups based on histone modification and DNA methylation patterns. These molecular profiles tend to resemble the cellular origins of PanNETs. Subsequent retrospective analyses have demonstrated that these molecular signatures are of prognostic value and, importantly, may be useful in the preoperative setting. These studies have highlighted that sporadic NF-PanNETs displaying biomarkers associated with disease progression and poor prognosis, such as alternative lengthening of telomeres, inactivating alpha thalassemia/mental retardation X-linked (ATRX) or death domain-associated protein (DAXX) gene mutations, or copy number variations, more often display alpha cell characteristics. Conversely, NF-PanNETs with beta cell characteristics often lack these unfavorable biomarkers. Alternative lengthening of telomeres, transcription factor protein expression, and possibly DNA methylation can be assessed in endoscopic ultrasound-guided tumor biopsies. Prospective studies focusing on cell-of-origin and epigenetic profile-driven decision making prior to surgery are likely to be routinely implemented into clinical practice in the near future. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Neuroendocrine/genetics , Cell Lineage/genetics , Epigenesis, Genetic , Pancreatic Neoplasms/genetics , Animals , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/therapy , Clinical Decision-Making , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Phenotype , Predictive Value of Tests , Prognosis
15.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003676

ABSTRACT

The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.


Subject(s)
Drosophila Proteins , Animals , Humans , alpha-Thalassemia/genetics , Chromatin/genetics , Chromatin/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Drosophila/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mammals/metabolism , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
16.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675163

ABSTRACT

Neuroblastoma (NB) is characterized by several malignant phenotypes that are difficult to treat effectively without combination therapy. The therapeutic implication of mitochondrial ClpXP protease ClpP and ClpX has been verified in several malignancies, but is unknown in NB. Firstly, we observed a significant increase in ClpP and ClpX expression in immature and mature ganglion cells as compared to more malignant neuroblasts and less malignant Schwannian-stroma-dominant cell types in human neuroblastoma tissues. We used ONC201 targeting ClpXP to treat NB cells, and found a significant suppression of mitochondrial protease, i.e., ClpP and ClpX, expression and downregulation of mitochondrial respiratory chain subunits SDHB and NDUFS1. The latter was associated with a state of energy depletion, increased reactive oxygen species, and decreased mitochondrial membrane potential, consequently promoting apoptosis and suppressing cell growth of NB. Treatment of NB cells with ONC201 as well as the genetic attenuation of ClpP and ClpX through specific short interfering RNA (siRNA) resulted in the significant upregulation of the tumor suppressor alpha thalassemia/mental retardation X-linked (ATRX) and promotion of neurite outgrowth, implicating mitochondrial ClpXP proteases in MYCN-amplified NB cell differentiation. Furthermore, ONC201 treatment significantly decreased MYCN protein expression and suppressed tumor formation with the reactivation of ATRX expression in MYCN-amplified NB-cell-derived xenograft tumors. Taken together, ONC201 could be the potential agent to provide diversified therapeutic application in NB, particularly in NB with MYCN amplification.


Subject(s)
Intellectual Disability , Neuroblastoma , alpha-Thalassemia , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Cell Line, Tumor , Intellectual Disability/genetics , alpha-Thalassemia/genetics , Neuroblastoma/metabolism , Mitochondria/metabolism , Peptide Hydrolases/metabolism , Gene Expression Regulation, Neoplastic , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
17.
Medicina (Kaunas) ; 59(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38003967

ABSTRACT

Introduction: A glioblastoma is an intra-axial brain tumour of glial origin that belongs to the category of diffuse gliomas and is the most common malignant neoplasia of the central nervous system. The rate of survival at 5 years, from the moment of diagnosis, is not higher than 10%. Materials and methods: In this retrospective study, fifty-four patients diagnosed with glioblastoma, from the Pathology Department of the County Emergency Clinical Hospital of Târgu Mureș, between 2014 and 2017 were included. We studied the clinico-pathological data (age, gender, location, and laterality) and, respectively, the immunoexpression of p53, Ki67, ATRX, and IDH-1 proteins. Results: We observed a statistically significant association between the laterality of the tumour according to the age groups, with the localization on the right side being more frequent in the age group below 65 years of age, while the involvement of the left hemisphere was more prevalent in those over 65 years. Out of the total 54 cases, 87.04% were found to be primary glioblastomas; more than 70% of the cases were ATRX immunopositive; almost 80% of the glioblastomas studied had wild-type p53 profile; and 35% of the cases were found to have a Ki67 index greater than 20%. A statistically significant association between gender and ATRX mutation was found; female cases were ATRX immunopositive in 92% of the cases. Almost 70% of the cases were both IDH-1 and p53 wild-type, and we observed the presence of both mutations in only 3.7% of the cases. Approximately 83% of primary glioblastomas were ATRX positive, respectively, and all IDH-1 mutant cases were ATRX negative. Conclusions: Glioblastomas still represent a multidisciplinary challenge considering their reserved prognosis. In this study, we described the most common clinico-pathological characteristics and IHC marker expression profiles, highlighting a variety of percentage ranges in primary and secondary glioblastomas. Given the small number of studied cases, further prospective studies on larger cohorts are needed in the future to evaluate the role of these immunohistochemical markers as prognostic factors for survival or recurrence.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Female , Aged , Glioblastoma/genetics , Ki-67 Antigen/metabolism , Tumor Suppressor Protein p53/genetics , Retrospective Studies , Prospective Studies , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , Brain Neoplasms/genetics , Mutation
18.
J Neurophysiol ; 127(5): 1309-1316, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35417255

ABSTRACT

The α thalassemia/mental retardation syndrome X-linked (ATRX) mutation impairs DNA damage repair in glioblastoma (GBM), making these cells more susceptible to treatment, which may contribute to the survival advantage in patients with GBM containing ATRX mutations. To better understand the role of ATRX in GBM, genes correlated with ATRX expression were screened in the Cancer Genome Atlas (702 cases) and Chinese Glioma Genome Atlas (325 cases) databases. Sodium-vitamin C cotransporter 2 (SVCT2) was the most positively correlated gene with ATRX expression. ATRX (about 1.99-fold) and SVCT2 (about 2.25-fold) were upregulated in GBM tissues from 40 patients compared with normal brain tissues from 23 subjects. ShSVCT2 transfection did not alter the in vitro viability of GL261 cells. At the same time, it could inhibit the proliferation of GL261 cells in the orthotopic transplantation model with diminished infiltrating macrophages (CD45highCD11b+), downregulated chemokine (C-C motif) ligand 2 (Ccl2), Ccl4, C-X-C motif chemokine ligand 1 (Cxcl1), and Cxcl15 expression, and decreased p-IκBα and p-c-Jun expression. Effect of ShSVCT2 transfection could be reversed by overexpression of SVCT2. siRNA interference of ATRX-dependent SVCT2 signal with shSVCT2 could inhibit tumor cell proliferation in Glu261-LuNeo xenograft tumor model with more survival advantage, probably by the inhibited macrophage chemotaxis. These results indicate that ATRX-dependent SVCT2-mediated chemokine-induced macrophage infiltration is regulated by the NF-κB pathway, which could be considered as treatment targets.NEW & NOTEWORTHY This study demonstrates that interference of ATRX-dependent SVCT2-mediated chemokine-induced macrophage infiltration could inhibit tumor cell proliferation in the GBM cell line-derived xenograft model. ATRX and SVCT2 are potential treatment targets identified in this study.


Subject(s)
Brain Neoplasms , Glioblastoma , Symporters , alpha-Thalassemia , Animals , Ascorbic Acid , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Disease Models, Animal , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Heterografts , Humans , Macrophages/metabolism , Macrophages/pathology , Mental Retardation, X-Linked , Sodium/metabolism , Sodium-Coupled Vitamin C Transporters , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
19.
Cancer Sci ; 113(6): 2167-2178, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35384159

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor in children. The chromatin remodeler ATRX is frequently mutated in high-risk patients with a poor prognosis. Although many studies have reported ATRX aberrations and the associated clinical characteristics in neuroblastoma, a comprehensive overview is currently lacking. In this study, we extensively characterize the mutational spectrum of ATRX aberrations in neuroblastoma tumors reported in previous studies and present an overview of patient and tumor characteristics. We collected the data of a total of 127 neuroblastoma patients and three cell lines with ATRX aberrations originating from 20 papers. We subdivide the ATRX aberrations into nonsense, missense, and multiexon deletions (MEDs) and show that 68% of them are MEDs. Of these MEDs, 75% are predicted to be in-frame. Furthermore, we identify a missense mutational hotspot region in the helicase domain. We also confirm that all three ATRX mutation types are more often identified in patients diagnosed at an older age, but still approximately 40% of the patients are aged 5 years or younger at diagnosis. Surprisingly, we found that 11q deletions are enriched in neuroblastomas with ATRX deletions compared to a reference cohort, but not in neuroblastomas with ATRX point mutations. Taken together, our data emphasizes a distinct ATRX mutation spectrum in neuroblastoma, which should be considered when studying molecular phenotypes and therapeutic strategies.


Subject(s)
Neuroblastoma , X-linked Nuclear Protein , Chromatin , DNA Helicases/genetics , Humans , Mutation , Neuroblastoma/genetics , Neuroblastoma/pathology , Phenotype , X-linked Nuclear Protein/genetics
20.
Ophthalmology ; 129(6): 679-693, 2022 06.
Article in English | MEDLINE | ID: mdl-35085662

ABSTRACT

PURPOSE: To evaluate targetable mutations and molecular genetic pathways in conjunctival melanoma with clinical correlation. DESIGN: Observational case series. PARTICIPANTS: Patients with conjunctival melanoma. MAIN OUTCOME MEASURES: Mutational profile of the tumor by next-generation sequencing (NGS), alternative lengthening of telomeres (ALT) by fluorescence in situ hybridization (FISH), and ATRX immunohistochemistry. Outcomes at 2 years and 5 years of tumor-related metastasis and death were recorded. RESULTS: Of the 101 patients, mean age at presentation was 60 years, 52% were male, and 88% were White. The NGS panels initially targeted BRAF only (n = 6, 6%), BRAF/NRAS (n = 17, 17%), and BRAF/NRAS/NF1 (n = 10, 10%). Sixty-eight tumors were tested with the expanded 592-gene panel. Next-generation sequencing identified high-frequency mutations in NF1 (29/74, 39%), BRAF (31/101, 31%), NRAS (25/95, 26%), and ATRX (17/68, 25%). Of those with an ATRX mutation, 12 (71%) had an additional NF1 mutation. A subset analysis of 21 melanomas showed that the ATRX mutation was associated with loss of ATRX protein expression and ALT. Loss of ATRX expression and ALT were present in both intraepithelial and invasive tumors, suggesting that an ATRX mutation is an early event in conjunctival melanoma progression. The NF1 and ATRX mutations were associated with tarsal (vs. nontarsal) tumors (NF1: 28% vs. 9%, P = 0.035, ATRX: 41% vs. 14%, P = 0.021) and orbital (vs. nonorbital) tumors (ATRX: 24% vs. 2%, P = 0.007). ATRXMUT (vs. ATRXWT) tumors were associated with a lower 2-year rate of metastasis (0% vs. 24%, P = 0.005). NRASMUT (vs. NRASWT) tumors were associated with a greater 2-year rate of metastasis (28% vs. 14%, P = 0.07) and death (16% vs. 4%, P = 0.04), with a 5-fold increased risk of death (relative risk, 5.45 [95% confidence interval, 1.11-26.71], P = 0.039). CONCLUSIONS: This study confirms the high frequency of previously documented BRAF and NRAS mutations and recently reported ATRX and NF1 mutations in conjunctival melanoma. An NRAS mutation implied increased risk for metastasis and death. Loss of ATRX and ALT may be early events in conjunctival melanoma development.


Subject(s)
Conjunctival Neoplasms , Melanoma , Skin Neoplasms , Conjunctival Neoplasms/genetics , Conjunctival Neoplasms/pathology , DNA Mutational Analysis , Female , Humans , In Situ Hybridization, Fluorescence , Male , Melanoma/genetics , Melanoma/pathology , Mutation , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL